Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method

被引:150
|
作者
Dong, Guangzhong [1 ]
Wei, Jingwen [1 ]
Zhang, Chenbin [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
关键词
Lithium-ion battery; State-of-charge; Battery modeling; Invariant imbedding method; OCV hysteresis; LITHIUM-ION BATTERIES; MANAGEMENT-SYSTEMS; DYNAMIC CURRENTS; ENERGY; PACKS;
D O I
10.1016/j.apenergy.2015.10.092
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The SOC (state-of-charge) of Li-ion (Lithium-ion) battery is an important evaluation index in BMS (battery management system) for EVs (Electric Vehicles) and smart grids. However, the existing special OCV (open circuit voltage) characteristics of LiFePO4 batteries complicate the estimation of SOC. To improve the estimation accuracy and reliability for battery SOC and battery terminal voltage, an online estimation approach for SOC and parameters of a battery based on the IIM (invariant-imbedding-method) algorithm has been proposed. Firstly, by using the IIM algorithm, an online parameter identification method has been established to accurately capture the real-time characteristics of the battery, which include the OCV hysteresis phenomena. Secondly, a dual IIM algorithm is employed to develop a multi-state estimator for SOC of the battery. Note that the parameters of the battery model are updated with the real-time measurements of the battery current and voltage at each sampling interval. Finally, the proposed method has been verified by a LiFePO4 battery cell under different operating current conditions. Experimental results indicate that the estimation value based on the proposed IIM-based estimator converges to real SOC with an error of +/- 2%, and the battery model can simulate OCV hysteresis phenomena robustly with high accuracy. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [21] State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve
    Wang, Limei
    Lu, Dong
    Liu, Qiang
    Liu, Liang
    Zhao, Xiuliang
    ELECTROCHIMICA ACTA, 2019, 296 : 1009 - 1017
  • [22] State of charge estimation of LiFePO4 batteries based on online parameter identification
    Zhang, Jinlong
    Wei, Yanjun
    Qi, Hanhong
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (11-12) : 6040 - 6050
  • [23] A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer
    Tang, Xiaopeng
    Wang, Yujie
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2015, 296 : 23 - 29
  • [24] LiFePO4 Battery Modeling and SOC Estimation Algorithm
    Wang, Anna
    Jin, Xin
    Li, Yapei
    Li, Nana
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7574 - 7578
  • [25] State estimation of LiFePO4 battery using a Linear Regression Analysis
    Lim H.-S.
    Yun J.-S.
    Lee K.-B.
    Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (02): : 366 - 372
  • [26] Online state of charge estimation of LiFePO4 battery based on EKF-AUKF algorithm with reference compensation for estimation results
    Wang, Luxiao
    Duan, Jiandong
    Zhao, Ke
    Sun, Li
    Journal of Energy Storage, 2024, 100
  • [27] The Modeling and SOC Estimation of a LiFePO4 Battery Considering the Relaxation and Overshoot of Polarization Voltage
    Zhu, Guorong
    Wu, Oukai
    Wang, Qian
    Kang, Jianqiang
    Wang, Jing V.
    BATTERIES-BASEL, 2023, 9 (07):
  • [28] State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting
    Yang, Naixing
    Zhang, Xiongwen
    Li, Guojun
    ELECTROCHIMICA ACTA, 2015, 151 : 63 - 71
  • [29] State of Charge Estimation Based on Improved LiFePO4 Battery Model and Kalman Filtering
    Xu, Zhu
    Gao, Shibin
    2016 IEEE 8TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC-ECCE ASIA), 2016,
  • [30] Estimation of Battery State of Health Using the Two-Pulse Method for LiFePO4 Batteries
    Zuluaga, Carolina
    Zuluaga, Carlos A.
    Restrepo, Jose V.
    ENERGIES, 2023, 16 (23)