THE GROMOV WIDTH OF COADJOINT ORBITS OF THE SYMPLECTIC GROUP

被引:1
|
作者
Halacheva, Iva [1 ]
Pabiniak, Milena [2 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Univ Cologne, Math Inst, Cologne, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Gromov width; coadjoint orbits; toric degenerations; Okounkov bodies; crystal bases; string polytopes;
D O I
10.2140/pjm.2018.295.403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Gromov width of a coadjoint orbit of the symplectic group through a regular point lambda, lying on some rational line, is at least equal to: min{vertical bar <alpha(v), lambda >vertical bar : alpha(v) a coroot}. Together with the results of Zoghi and Caviedes concerning the upper bounds, this establishes the actual Gromov width. This fits in the general conjecture that for any compact connected simple Lie group G, the Gromov width of its coadjoint orbit through lambda is an element of Lie(G)* is given by the above formula. The proof relies on tools coming from symplectic geometry, algebraic geometry and representation theory: we use a toric degeneration of a coadjoint orbit to a toric variety whose polytope is the string polytope arising from a string parametrization of elements of a crystal basis for a certain representation of the symplectic group.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 50 条
  • [41] Canonical domains for coadjoint orbits
    Torres, David Martinez
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (06): : 2115 - 2145
  • [42] Strict quantization of coadjoint orbits
    Landsman, NP
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6372 - 6383
  • [43] Coadjoint orbits of Lie groupoids
    Lang, Honglei
    Liu, Zhangju
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 : 217 - 232
  • [44] Strict quantization of coadjoint orbits
    Schmitt, Philipp
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (04) : 1181 - 1249
  • [45] Cohomological splitting of coadjoint orbits
    A. Viña
    Archiv der Mathematik, 2004, 82 : 13 - 15
  • [46] Noise and Dissipation on Coadjoint Orbits
    Alexis Arnaudon
    Alex L. De Castro
    Darryl D. Holm
    Journal of Nonlinear Science, 2018, 28 : 91 - 145
  • [47] Noise and Dissipation on Coadjoint Orbits
    Arnaudon, Alexis
    De Castro, Alex L.
    Holm, Darryl D.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (01) : 91 - 145
  • [48] ON SUMS OF ADMISSIBLE COADJOINT ORBITS
    Eshmatov, Alimjon
    Foth, Philip
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (02) : 727 - 735
  • [49] Star products on coadjoint orbits
    Lledó, MA
    PHYSICS OF ATOMIC NUCLEI, 2001, 64 (12) : 2136 - 2138
  • [50] Deformation quantization of coadjoint orbits
    Lledó, MA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (22-23): : 2397 - 2400