THE GROMOV WIDTH OF COADJOINT ORBITS OF THE SYMPLECTIC GROUP

被引:1
|
作者
Halacheva, Iva [1 ]
Pabiniak, Milena [2 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Univ Cologne, Math Inst, Cologne, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Gromov width; coadjoint orbits; toric degenerations; Okounkov bodies; crystal bases; string polytopes;
D O I
10.2140/pjm.2018.295.403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Gromov width of a coadjoint orbit of the symplectic group through a regular point lambda, lying on some rational line, is at least equal to: min{vertical bar <alpha(v), lambda >vertical bar : alpha(v) a coroot}. Together with the results of Zoghi and Caviedes concerning the upper bounds, this establishes the actual Gromov width. This fits in the general conjecture that for any compact connected simple Lie group G, the Gromov width of its coadjoint orbit through lambda is an element of Lie(G)* is given by the above formula. The proof relies on tools coming from symplectic geometry, algebraic geometry and representation theory: we use a toric degeneration of a coadjoint orbit to a toric variety whose polytope is the string polytope arising from a string parametrization of elements of a crystal basis for a certain representation of the symplectic group.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 50 条