Light types for polynomial time computation in Lambda-calculus

被引:38
|
作者
Baillot, P [1 ]
Terui, K [1 ]
机构
[1] Univ Paris 13, CNRS, Lab Informat Paris Nord, F-93430 Villetaneuse, France
关键词
D O I
10.1109/LICS.2004.1319621
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new type system for lambda-calculus ensuring that well-typed programs can be executed in polynomial time: Dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality.t corresponds to a fragment of Light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms: subject reduction is satisfied and a well-typed term admits a polynomial bound on the reduction by any strategy. Finally we establish that as LAL, DLAL allows to represent all poly time functions.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [1] Light types for polynomial time computation in lambda calculus
    Baillot, Patrick
    Terui, Kazushige
    INFORMATION AND COMPUTATION, 2009, 207 (01) : 41 - 62
  • [2] Soft lambda-calculus: A language for polynomial time computation
    Baillot, P
    Mogbil, V
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2004, 2987 : 27 - 41
  • [3] Semantics of time and lambda-calculus
    不详
    JOURNAL OF INDO-EUROPEAN STUDIES, 1999, 27 (3-4): : 508 - 508
  • [4] INHABITATION OF TYPES IN THE SIMPLY TYPED LAMBDA-CALCULUS
    DEKKERS, W
    INFORMATION AND COMPUTATION, 1995, 119 (01) : 14 - 17
  • [5] An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus
    Mazza, Damiano
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 471 - 480
  • [6] Atomic lambda-calculus: a typed lambda-calculus with explicit sharing
    Gundersen, Tom
    Heijltjes, Willem
    Parigot, Michel
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 311 - 320
  • [7] NORMAL FORMS IN THE TYPED LAMBDA-CALCULUS WITH TUPLE TYPES
    ZLATUSKA, J
    KYBERNETIKA, 1985, 21 (05) : 366 - 381
  • [8] Some algebraic structures in Lambda-calculus with inductive types
    Soloviev, S
    Chemouil, D
    TYPES FOR PROOFS AND PROGRAMS, 2004, 3085 : 338 - 354
  • [9] A binary modal logic for the intersection types of lambda-calculus
    Valentini, S
    Viale, M
    INFORMATION AND COMPUTATION, 2003, 185 (02) : 211 - 232
  • [10] Non-idempotent intersection types for the Lambda-Calculus
    Bucciarelli, Antonio
    Kesner, Delia
    Ventura, Daniel
    LOGIC JOURNAL OF THE IGPL, 2017, 25 (04) : 431 - 464