An element omega in the free group on nu letters defines a map f(omega).(G):G(r) --> G for each group G. In this note we show that whenever omega not equal 1 and G is a semisimple algebraic group f(omega.G) is dominant. As an application, we show that for fixed omega and Gamma(i) a sequence of pairwise non-isomorphic finite simple groups. lim/i --> infinity log\Gamma(i)\/log\f(omega.Gammai)(Gamma(i)(r))\ = 1. Let F-r be the free group on r generators x(1)......x(r). For any group G. each word omega = x(a1)(b1)x(a2)(b2)...x(am)(bm) is an element of F-r defines a corresponding word map f(omega.G):G(r) --> G: f(omega.G)(g1.....gr) = g(a1)(b1)g(a2)(b2)...g(am)(bm).
机构:
Herzen State Pedag Univ, Dept Math, 48 Moika Embankment, St Petersburg 191186, Russia
Sankt Petersburg State Univ, Dept Math, Univ Sky Prospekt 28, St Petersburg 198504, RussiaHerzen State Pedag Univ, Dept Math, 48 Moika Embankment, St Petersburg 191186, Russia