Ends of locally symmetric spaces with maximal bottom spectrum

被引:7
|
作者
Ji, Lizhen [1 ]
Li, Peter [2 ]
Wang, Jiaping [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
COMPLETE MANIFOLDS; HARMONIC-FUNCTIONS; POSITIVE SPECTRUM; KAHLER-MANIFOLDS; COMPACT; THEOREM;
D O I
10.1515/CRELLE.2009.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a symmetric space of non-compact type and Gamma/X a locally symmetric space. Then the bottom spectrum lambda(1)(Gamma\X) satisfies the inequality lambda 1(Gamma\X) <= lambda(1)(X). We show that if equality lambda 1(Gamma\X) = lambda(1)(X) holds, then Gamma/X has either one end, which is necessarily of infinite volume, or two ends, one of infinite volume and another of finite volume. In the latter case, Gamma\X is isometric to R-1 x N endowed with a multi-warped metric, where N is compact.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条