Ends of locally symmetric spaces with maximal bottom spectrum

被引:7
|
作者
Ji, Lizhen [1 ]
Li, Peter [2 ]
Wang, Jiaping [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
COMPLETE MANIFOLDS; HARMONIC-FUNCTIONS; POSITIVE SPECTRUM; KAHLER-MANIFOLDS; COMPACT; THEOREM;
D O I
10.1515/CRELLE.2009.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a symmetric space of non-compact type and Gamma/X a locally symmetric space. Then the bottom spectrum lambda(1)(Gamma\X) satisfies the inequality lambda 1(Gamma\X) <= lambda(1)(X). We show that if equality lambda 1(Gamma\X) = lambda(1)(X) holds, then Gamma/X has either one end, which is necessarily of infinite volume, or two ends, one of infinite volume and another of finite volume. In the latter case, Gamma\X is isometric to R-1 x N endowed with a multi-warped metric, where N is compact.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条
  • [1] Bottom of the L2 spectrum of the Laplacian on locally symmetric spaces
    Anker, Jean-Philippe
    Zhang, Hong-Wei
    GEOMETRIAE DEDICATA, 2022, 216 (01)
  • [2] On the number of ends of rank one locally symmetric spaces
    Stover, Matthew
    GEOMETRY & TOPOLOGY, 2013, 17 (02) : 905 - 924
  • [3] Normal Covering Spaces with Maximal Bottom of Spectrum
    Polymerakis, Panagiotis
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [4] Normal Covering Spaces with Maximal Bottom of Spectrum
    Panagiotis Polymerakis
    The Journal of Geometric Analysis, 2023, 33
  • [5] Some questions on spectrum and arithmetic of locally symmetric spaces
    Rajan, Conjeeveram S.
    SAPPORO 2007: ALGEBRAIC AND ARITHMETIC STRUCTURES OF MODULI SPACES, 2010, 58 : 137 - 157
  • [6] Spectrum of the Laplacian and Riesz transform on locally symmetric spaces
    Mandouvalos, Nikolaos
    Marias, Michel
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (02): : 134 - 144
  • [7] Stable spectrum for pseudo-Riemannian locally symmetric spaces
    Kassel, Fanny
    Kobayashi, Toshiyuki
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) : 29 - 33
  • [8] The Lp Spectrum of Locally Symmetric Spaces with Small Fundamental Group
    Andreas Weber
    Mathematical Physics, Analysis and Geometry, 2009, 12 : 75 - 95
  • [9] The Weyl upper bound on the discrete spectrum of locally symmetric spaces
    Ji, LZ
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, 51 (01) : 97 - 147
  • [10] LOCALLY SYMMETRIC SPACES
    FURNESS, PMD
    ARROWSMITH, DK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (AUG): : 487 - 499