FIXED POINTS OF THE SUM OF DIVISORS FUNCTION ON F2[x]
被引:0
|
作者:
Gallardo, Luis H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, F-29238 Brest, FranceUniv Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, F-29238 Brest, France
Gallardo, Luis H.
[1
]
机构:
[1] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, F-29238 Brest, France
We work on an analogue of a classical arithmetic problem over polynomials. More precisely, we study the fixed points F of the sum of divisors function sigma : F-2[x] -> F-2[x] (defined mutatis mutandi like the usual sum of divisors over the integers) of the form F := A(2) center dot S, S square-free, with omega (S) <= 3, coprime with A, for A even, of whatever degree, under some conditions. This gives a characterization of 5 of the 11 known fixed points of sigma in F-2[x].