FIXED POINTS OF THE SUM OF DIVISORS FUNCTION ON F2[x]

被引:0
|
作者
Gallardo, Luis H. [1 ]
机构
[1] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, F-29238 Brest, France
关键词
Cyclotomic polynomials; characteristic; 2; Mersenne polynomials; factorization; SPLITTING PERFECT POLYNOMIALS; F-P; IRREDUCIBLE POLYNOMIALS; FACTORIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We work on an analogue of a classical arithmetic problem over polynomials. More precisely, we study the fixed points F of the sum of divisors function sigma : F-2[x] -> F-2[x] (defined mutatis mutandi like the usual sum of divisors over the integers) of the form F := A(2) center dot S, S square-free, with omega (S) <= 3, coprime with A, for A even, of whatever degree, under some conditions. This gives a characterization of 5 of the 11 known fixed points of sigma in F-2[x].
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条