FIXED POINTS OF THE SUM OF DIVISORS FUNCTION ON F2[x]

被引:0
|
作者
Gallardo, Luis H. [1 ]
机构
[1] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, F-29238 Brest, France
关键词
Cyclotomic polynomials; characteristic; 2; Mersenne polynomials; factorization; SPLITTING PERFECT POLYNOMIALS; F-P; IRREDUCIBLE POLYNOMIALS; FACTORIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We work on an analogue of a classical arithmetic problem over polynomials. More precisely, we study the fixed points F of the sum of divisors function sigma : F-2[x] -> F-2[x] (defined mutatis mutandi like the usual sum of divisors over the integers) of the form F := A(2) center dot S, S square-free, with omega (S) <= 3, coprime with A, for A even, of whatever degree, under some conditions. This gives a characterization of 5 of the 11 known fixed points of sigma in F-2[x].
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条
  • [1] On the fixed points of the interval function [f]([x])=[A][x]+[b]
    Mayer, G
    Warnke, I
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 363 : 201 - 216
  • [2] ON THE SUM OF DIVISORS FUNCTION
    BALAKRISHNAN, U
    JOURNAL OF NUMBER THEORY, 1995, 51 (02) : 147 - 168
  • [3] GOTTFRIED SUM FROM THE RATIO F2(N)/F2(P)
    AMAUDRUZ, P
    ARNEODO, M
    ARVIDSON, A
    BADELEK, B
    BAUM, G
    BEAUFAYS, J
    BIRD, IG
    BOTJE, M
    BROGGINI, C
    BRUCKNER, W
    BRULL, A
    BURGER, WJ
    CIBOROWSKI, J
    CRITTENDEN, R
    VANDANTZIG, R
    DOBBELING, H
    DOMINGO, J
    DRINKARD, J
    DZIERBA, A
    ENGELIEN, H
    FERRERO, MI
    FLURI, L
    GRAFSTROM, P
    VONHARRACH, D
    VANDERHEIJDEN, M
    HEUSCH, C
    INGRAM, Q
    JACHOLKOWSKA, A
    JANSON, K
    DEJONG, M
    KABUSS, EM
    KAISER, R
    KETEL, TJ
    KLEIN, F
    KORZEN, B
    KRUNER, U
    KULLANDER, S
    LANDGRAF, U
    LETTENSTROM, T
    LINDQVIST, T
    MALLOT, GK
    MARIOTTI, C
    VANMIDDELKOOP, G
    MIZUNO, Y
    NASSALSKI, J
    NOWOTNY, D
    PAVEL, N
    PESCHEL, H
    PERONI, C
    POVH, B
    PHYSICAL REVIEW LETTERS, 1991, 66 (21) : 2712 - 2715
  • [4] On the sum-of-divisors function
    Ewell, John A.
    FIBONACCI QUARTERLY, 2007, 45 (03): : 205 - 207
  • [5] EULERS FUNCTION AND THE SUM OF DIVISORS
    NARKIEWICZ, W
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 323 : 200 - 212
  • [6] A twin for Euler's φ function in F2[-X]
    Duran Diaz, R.
    Munoz Masque, J.
    Peinado Dominguex, A.
    ARITHMETIC OF FINITE FIELDS, PROCEEDINGS, 2007, 4547 : 318 - +
  • [7] On sofic approximations of F2 x F2
    Ioana, Adrian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (07) : 2333 - 2351
  • [8] On a Sum Involving the Sum-of-Divisors Function
    Zhao, Feng
    Wu, Jie
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [9] GOTTFRIED SUM-RULE AND THE SHAPE OF F2(P)-F2(N)
    MELNITCHOUK, W
    THOMAS, AW
    SIGNAL, AI
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1991, 340 (01): : 85 - 92
  • [10] Cyclic codes as ideals in F2[x;aNo]n, F2[x]an, and F2[x;1/bNo]abn: A linkage
    1600, Politechnica University of Bucharest (78):