Quantum dots and nanowires for optoelectronic device applications

被引:0
|
作者
Gao, Q. [1 ]
Kim, Y. [1 ]
Joyce, H. J. [1 ]
Lever, P. [1 ]
Mokkapati, S. [1 ]
Buda, M. [1 ]
Tan, H. H. [1 ]
Jagadish, C. [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
quantum dots; nanowire; lasers; selective area epitaxy; InGaAs;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)13 substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper.
引用
收藏
页码:242 / +
页数:2
相关论文
共 50 条
  • [31] Quantum Dots in Nanowires
    Francaviglia, Luca
    Fontana, Yannik
    Fontcuberta i Morral, Anna
    SEMICONDUCTORS AND SEMIMETALS, VOL 94: SEMICONDUCTOR NANOWIRES II: PROPERTIES AND APPLICATIONS, 2016, 94 : 159 - 184
  • [32] Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications
    Yoon, Hyewon
    Park, Minsu
    Kim, Jungmo
    Novak, Travis G.
    Lee, Sukki
    Jeon, Seokwoo
    CHEMICAL PHYSICS REVIEWS, 2021, 2 (03):
  • [33] Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications
    Zhao, Haiguang
    Liu, Jiabin
    Vidal, Francois
    Vomiero, Alberto
    Rosei, Federico
    NANOSCALE, 2018, 10 (36) : 17189 - 17197
  • [34] InN Quantum Dots by Metalorganic Chemical Vapor Deposition for Optoelectronic Applications
    Reilly, Caroline E.
    Keller, Stacia
    Nakamura, Shuji
    DenBaars, Steven P.
    FRONTIERS IN MATERIALS, 2021, 8
  • [35] Progresses in CuInSe2 Quantum Dots: Synthesis and Optoelectronic Applications
    Huang Z.
    Huang F.
    Tian J.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2022, 46 (06): : 695 - 706
  • [36] Rational Design of Colloidal Core/Shell Quantum Dots for Optoelectronic Applications
    Xiang-Long Huang
    Xin Tong
    Zhiming M.Wang
    Journal of Electronic Science and Technology, 2020, (02) : 105 - 118
  • [37] Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications
    Zhang, Jian
    Zhang, Shaohui
    Zhang, Yule
    Al-Hartomy, Omar A.
    Wageh, Swelm
    Al-Sehemi, Abdullah G.
    Hao, Yabin
    Gao, Lingfeng
    Wang, Hao
    Zhang, Han
    LASER & PHOTONICS REVIEWS, 2023, 17 (03)
  • [38] Rational Design of Colloidal Core/Shell Quantum Dots for Optoelectronic Applications
    Huang X.-L.
    Tong X.
    Wang Z.M.
    J. Electron. Sci. Technol., 2020, 2
  • [39] Ge/Si NANOHETEROSTRUCTURES WITH ORDERED Ge QUANTUM DOTS FOR OPTOELECTRONIC APPLICATIONS
    Pchelyakov, O. P.
    Dvurechenskii, A. V.
    Nikiforov, A. I.
    Voitsekhovskii, A. V.
    Grigor'ev, D. V.
    Kokhanenko, A. P.
    RUSSIAN PHYSICS JOURNAL, 2011, 53 (09) : 943 - 948
  • [40] Carbon quantum dots: organic–inorganic perovskite composites for optoelectronic applications
    Grigorii V. Nenashev
    Roman S. Kryukov
    Maria S. Istomina
    Petr A. Aleshin
    Igor P. Shcherbakov
    Vasily N. Petrov
    Vyacheslav A. Moshnikov
    Andrey N. Aleshin
    Journal of Materials Science: Materials in Electronics, 2023, 34