Sequential estimation for time series regression models

被引:4
|
作者
Shiohama, T
Taniguchi, M
机构
[1] Hitotsubashi Univ, Inst Econ Res, Tokyo 1868603, Japan
[2] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
关键词
sequential procedure; time series regression model; least-squares estimator; stopping rule; linear process;
D O I
10.1016/S0378-3758(03)00153-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sequential procedures are proposed to estimate the regression parameters in a linear regression model with dependent residuals. The error process considered here is a linear process with unknown spectral density. The sequential point estimator for the regression parameters is based on the least-squares estimator and is shown to be asymptotically risk efficient under some natural conditions on the design sequence. Simulation studies are given to evaluate the asymptotic performances of the sequential procedures of the sequential estimator. (C) 2003 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:295 / 312
页数:18
相关论文
共 50 条
  • [31] Regression models for binary time series with gaps
    Klingenberg, Bernhard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4076 - 4090
  • [32] Regression Models for Time Series with Increasing Seasonality
    David Madrigal Espinoza, Sergio
    COMPUTACION Y SISTEMAS, 2014, 18 (04): : 821 - 831
  • [33] Dependence analysis of regression models in time series
    Wang, Xuanhe
    Xu, Maochao
    Meng, Shengwang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (06) : 1136 - 1142
  • [34] On goodness of fit for time series regression models
    Chen, CWS
    Wen, YW
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 69 (03) : 239 - 256
  • [35] Dependence analysis of regression models in time series
    Xuanhe Wang
    Maochao Xu
    Shengwang Meng
    Journal of Systems Science and Complexity, 2012, 25 : 1136 - 1142
  • [36] Minimax estimation for time series models
    Liu, Yan
    Taniguchi, Masanobu
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (03): : 353 - 359
  • [37] Minimax estimation for time series models
    Yan Liu
    Masanobu Taniguchi
    METRON, 2021, 79 : 353 - 359
  • [38] SEQUENTIAL REGRESSION - A FLEXIBLE TOOL FOR TIME-SERIES MODELING
    FACKLER, PL
    KING, RP
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1984, 66 (05) : 900 - 900
  • [39] SEQUENTIAL ESTIMATION OF PARAMETERS OF AUTOREGRESSIVE TIME SERIES.
    Uosaki, Katsuji
    Technology Reports of the Osaka University, 1979, 29 (1492-1516): : 309 - 317
  • [40] Regression models for estimation of human endurance time
    Verma, S.S.
    Defence Science Journal, 1993, 43 (03) : 281 - 284