Sequential estimation for time series regression models

被引:4
|
作者
Shiohama, T
Taniguchi, M
机构
[1] Hitotsubashi Univ, Inst Econ Res, Tokyo 1868603, Japan
[2] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
关键词
sequential procedure; time series regression model; least-squares estimator; stopping rule; linear process;
D O I
10.1016/S0378-3758(03)00153-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sequential procedures are proposed to estimate the regression parameters in a linear regression model with dependent residuals. The error process considered here is a linear process with unknown spectral density. The sequential point estimator for the regression parameters is based on the least-squares estimator and is shown to be asymptotically risk efficient under some natural conditions on the design sequence. Simulation studies are given to evaluate the asymptotic performances of the sequential procedures of the sequential estimator. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 312
页数:18
相关论文
共 50 条