Resolving the high redshift Lyα forest in smoothed particle hydrodynamics simulations

被引:76
|
作者
Bolton, James S. [1 ]
Becker, George D. [2 ,3 ]
机构
[1] Max Planck Inst Astrophys, D-85748 Garching, Germany
[2] Kavli Inst Cosmol, Cambridge CB3 0HA, England
[3] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
关键词
methods: numerical; intergalactic medium; quasars: absorption lines; INTERGALACTIC MEDIUM; REIONIZATION; GADGET-2; UNIVERSE; SPECTRA; POWER; MODEL;
D O I
10.1111/j.1745-3933.2009.00700.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use a large set of cosmological smoothed particle hydrodynamics (SPH) simulations to examine the effect of mass resolution and box size on synthetic Ly alpha forest spectra at 2 <= z <= 5. The mass resolution requirements for the convergence of the mean Ly alpha flux and flux power spectrum at z = 5 are significantly stricter than at lower redshift. This is because transmission in the high redshift Ly alpha forest is primarily due to underdense regions in the intergalactic medium (IGM), and these are less well resolved compared to the moderately overdense regions which dominate the Ly alpha forest opacity at z similar or equal to 2-3. We further find that the gas density distribution in our simulations differs significantly from previous results in the literature at large overdensities (Delta > 10). We conclude that studies of the Ly alpha forest at z = 5 using SPH simulations require a gas particle mass of M-gas <= 2 x 10(5) h(-1) M-circle dot, which is greater than or similar to 8 times the value required at z = 2. A box size of at least 40 h(-1) Mpc is preferable at all redshifts.
引用
收藏
页码:L26 / L30
页数:5
相关论文
共 50 条
  • [31] Detection of Silent Data Corruptions in Smoothed Particle Hydrodynamics Simulations
    Cavelan, Aurelien
    Cabezon, Ruben M.
    Ciorba, Florina M.
    [J]. 2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 31 - 40
  • [32] The giant impact simulations with density independent smoothed particle hydrodynamics
    Hosono, Natsuki
    Saitoh, Takayuki R.
    Makino, Junichiro
    Genda, Hidenori
    Ida, Shigeru
    [J]. ICARUS, 2016, 271 : 131 - 157
  • [33] Advances in Multi-GPU Smoothed Particle Hydrodynamics Simulations
    Rustico, Eugenio
    Bilotta, Giuseppe
    Herault, Alexis
    Del Negro, Ciro
    Gallo, Giovanni
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (01) : 43 - 52
  • [34] Cosmological galaxy formation simulations using smoothed particle hydrodynamics
    Stinson, G. S.
    Bailin, J.
    Couchman, H.
    Wadsley, J.
    Shen, S.
    Nickerson, S.
    Brook, C.
    Quinn, T.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (02) : 812 - 826
  • [35] Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
    Pfrommer, C
    Springel, V
    Ensslin, TA
    Jubelgas, M
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 367 (01) : 113 - 131
  • [36] Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics
    Abdelraheem M. Aly
    Sang-Wook Lee
    [J]. Journal of Mechanical Science and Technology, 2014, 28 : 2179 - 2188
  • [37] METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
    Williamson, David
    Martel, Hugo
    Kawata, Daisuke
    [J]. ASTROPHYSICAL JOURNAL, 2016, 822 (02):
  • [38] Metal cutting simulations using smoothed particle hydrodynamics on the GPU
    M. Röthlin
    H. Klippel
    M. Afrasiabi
    K. Wegener
    [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102 : 3445 - 3457
  • [39] Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics
    Aly, Abdelraheem M.
    Lee, Sang-Wook
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (06) : 2179 - 2188
  • [40] Smoothed particle hydrodynamics simulations of the evaporation of suspended liquid droplets
    Diaz-Damacillo, Lamberto
    Sigalotti, Leonardo Di G.
    Alvarado-Rodriguez, Carlos E.
    Klapp, Jaime
    [J]. PHYSICS OF FLUIDS, 2023, 35 (12)