On the pullback attractor for the non-autonomous SIR equations with diffusion

被引:6
|
作者
Tan, Wen [1 ,2 ]
Ji, Yingdan [3 ]
机构
[1] Shenzhen Univ, Sch Math & Stat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Minist Educ, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov,Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Non-autonomous; SIR model with diffusion; Higher-order attraction; (L-2; L2+delta) pullback attractors; MATHEMATICAL-THEORY; DYNAMICS; MODEL;
D O I
10.1016/j.jmaa.2017.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamics of a non-autonomous SIR model with diffusion. We first prove that the (L-2, L-2) pullback attractor attracts any bounded subset of L-2 in the topology of L2+delta for any delta >= 0. Then we show that the (L-2, L-2) pullback attractor is indeed a (L-2, L2+delta) pullback attractor. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1850 / 1862
页数:13
相关论文
共 50 条
  • [21] PULLBACK ATTRACTOR FOR A DYNAMIC BOUNDARY NON-AUTONOMOUS PROBLEM WITH INFINITE DELAY
    Samprogna, Rodrigo
    Caraballo, Tomas
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02): : 509 - 523
  • [22] Pullback permanence for non-autonomous partial differential equations
    Langa, Jose A.
    Suarez, Antonio
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [23] Pullback attractors in H1(RN) for non-autonomous nonclassical diffusion equations
    Zhang, Fanghong
    Liu, Yongfeng
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (01): : 106 - 118
  • [24] On Pullback Attractors in H2 for Non-autonomous Reaction-diffusion Equations
    Li, Hongyan
    Zhang, Weisi
    [J]. 26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 693 - 696
  • [25] Lp-PULLBACK ATTRACTORS FOR NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH DELAYS
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 9 - 27
  • [26] Pullback attractors of non-autonomous reaction-diffusion equations in H01
    Song, Haitao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (10) : 2357 - 2376
  • [27] Finite Fractal Dimension Of Pullback Attractors And Application To Non-Autonomous Reaction Diffusion Equations
    Li, Yongjun
    Wang, Suyun
    Wei, Jinying
    [J]. APPLIED MATHEMATICS E-NOTES, 2010, 10 : 19 - 26
  • [28] Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions
    Anguiano, Maria
    Marin-Rubio, Pedro
    Real, Jose
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 608 - 618
  • [29] A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Langa, Jose A.
    Rivero, Felipe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2272 - 2283
  • [30] Pullback Attractor for Non-autonomous P-Laplacian Equation in Unbounded Domain
    Chen, Guangxia
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 471 - 478