On approximate diagonalization of third order symmetric tensors by orthogonal transformations

被引:8
|
作者
Li, Jianze [1 ]
Usevich, Konstantin [2 ]
Comon, Pierre [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, Grenoble, France
[2] Univ Lorraine, CNRS, CRAN, Nancy, France
基金
中国国家自然科学基金;
关键词
Symmetric tensors; Orthogonally decomposable tensors; Approximate tensor diagonalization; Jacobi-type algorithms; Maximally diagonal tensors; DECOMPOSITION; RANK;
D O I
10.1016/j.laa.2019.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the approximate orthogonal diagonalization problem of third order symmetric tensors. We define several classes of approximately diagonal tensors, including the ones corresponding to the stationary points of this problem. We study the relationships between these classes, and other well-known objects, such as tensor Z-eigenvalue and Z-eigenvector. We also prove results on convergence of the cyclic Jacobi (or Jacobi CoM2) algorithm. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 351
页数:28
相关论文
共 50 条
  • [41] TRIPLE DECOMPOSITION AND TENSOR RECOVERY OF THIRD ORDER TENSORS
    Qi, Liqun
    Chen, Yannan
    Bakshi, Mayank
    Zhang, Xinzhen
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 299 - 329
  • [42] On the inversion of non symmetric sixth-order isotropic tensors and conditions of positiveness of third-order tensor valued quadratic functions
    Monchiet, Vincent
    Bonnet, Guy
    MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (04) : 326 - 329
  • [43] Singular value decomposition of third order quaternion tensors
    Qin, Zhenzhi
    Ming, Zhenyu
    Zhang, Liping
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [44] Symmetric rank-1 approximation of symmetric high-order tensors
    Wu, Leqin
    Liu, Xin
    Wen, Zaiwen
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (02): : 416 - 438
  • [45] Computing the polyadic decomposition of nonnegative third order tensors
    Royer, Jean-Philip
    Thirion-Moreau, Nadege
    Comon, Pierre
    SIGNAL PROCESSING, 2011, 91 (09) : 2159 - 2171
  • [46] Recovery of Third Order Tensors via Convex Optimization
    Rauhut, Holger
    Stojanac, Zeljka
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 397 - 401
  • [47] Singular value decomposition of third order quaternion tensors
    Qin, Zhenzhi
    Ming, Zhenyu
    Zhang, Liping
    Applied Mathematics Letters, 2022, 123
  • [48] BLEND SEPARATION OF CYCLOSTATIONARY SOURCES USING NON-ORTHOGONAL APPROXIMATE JOINT DIAGONALIZATION
    CheViet, NhatAnh
    El Badaoui, Mohamed
    Belouchrani, Adel
    Guillet, Francois
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 493 - 496
  • [49] INVARIANT FORMS IN ROTATING ORTHOTROPIC SUBGROUP OF ORTHOGONAL TRANSFORMATIONS OF RELATION BETWEEN 2 SYMMETRICAL TENSORS OF 2ND ORDER
    BOEHLER, JP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (10): : 609 - 611
  • [50] APPROXIMATE MATRIX AND TENSOR DIAGONALIZATION BY UNITARY TRANSFORMATIONS: CONVERGENCE OF JACOBI-TYPE ALGORITHMS
    Usevich, Konstantin
    Li, Jianze
    Comon, Pierre
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 2998 - 3028