Estimation of Count Data using Mixed Poisson, Generalized Poisson and Finite Poisson Mixture Regression Models

被引:1
|
作者
Zamani, Hossein [1 ]
Faroughi, Pouya [2 ]
Ismail, Noriszura [2 ]
机构
[1] Hormozgan Univ, Dept Stat, Bandar Abbas, Iran
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi, Selangor, Malaysia
关键词
Poisson; mixed Poisson; generalized Poisson; finite Poisson mixture; regression model; MAXIMUM LIKELIHOOD ESTIMATION; MIXING DISTRIBUTION; FUNCTIONAL FORMS;
D O I
10.1063/1.4882628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study relates the Poisson, mixed Poisson (MP), generalized Poisson (GP) and finite Poisson mixture (FPM) regression models through mean-variance relationship, and suggests the application of these models for overdispersed count data. As an illustration, the regression models are fitted to the US skin care count data. The results indicate that FPM regression model is the best model since it provides the largest log likelihood and the smallest AIC, followed by Poisson-Inverse Gaussion (PIG), GP and negative binomial (NB) regression models. The results also show that NB, PIG and GP regression models provide similar results.
引用
收藏
页码:1144 / 1150
页数:7
相关论文
共 50 条
  • [11] Modelling of Filariasis in East Java']Java with Poisson Regression and Generalized Poisson Regression Models
    Darnah
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2015), 2016, 1723
  • [12] Use of Poisson, Poisson-Gamma, Poisson-Inverse Gaussian, and Generalized Poisson-Lindley distributions for count data
    Freitas, Silvia M.
    Duarte, Caroline G.
    SIGMAE, 2023, 12 (01): : 172 - 189
  • [13] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Yang, MS
    Lai, CY
    SOFT COMPUTING, 2005, 9 (07) : 519 - 524
  • [14] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Miin-Shen Yang
    Chien-Yo Lai
    Soft Computing, 2005, 9 : 519 - 524
  • [15] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541
  • [16] A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking
    Bermudez, Lluis
    Karlis, Dirrntris
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3988 - 3999
  • [17] The Applications of Generalized Poisson Regression Models to Insurance Claim Data
    Faroughi, Pouya
    Li, Shu
    Ren, Jiandong
    RISKS, 2023, 11 (12)
  • [18] Some Aspects of Poisson, Mixture of Poisson and Generalized Poisson Distributions of order k
    Gupta, Rupak
    Deyb, Geeta
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2014, 7 (01) : 14 - 25
  • [19] Conway-Maxwell-Poisson regression models for dispersed count data
    Sellers, Kimberly F.
    Premeaux, Bailey
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (06)
  • [20] Extended Poisson-Tweedie: Properties and regression models for count data
    Bonat, Wagner H.
    Jorgensen, Bent
    Kokonendji, Celestin C.
    Hinde, John
    Demetrio, Clarice G. B.
    STATISTICAL MODELLING, 2018, 18 (01) : 24 - 49