LINEAR GROWTH OF THE KELVIN-HELMHOLTZ INSTABILITY WITH AN ADIABATIC COSMIC-RAY GAS

被引:6
|
作者
Suzuki, Akihiro [1 ]
Takahashi, Hiroyuki R. [1 ]
Kudoh, Takahiro [2 ,3 ]
机构
[1] Natl Astron Observ Japan, Ctr Computat Astrophys, Mitaka, Tokyo 1818588, Japan
[2] Natl Astron Observ Japan, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan
[3] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan
来源
ASTROPHYSICAL JOURNAL | 2014年 / 787卷 / 02期
关键词
cosmic rays; instabilities; magnetic fields; magnetohydrodynamics (MHD); WEAKLY MAGNETIZED DISKS; LOCAL SHEAR INSTABILITY; MAGNETOHYDRODYNAMIC SIMULATIONS; MAGNETOROTATIONAL-INSTABILITY; THERMAL-INSTABILITY; PARKER INSTABILITY; ACCRETION DISKS; GALACTIC WINDS; COLD FRONTS; DRIVEN;
D O I
10.1088/0004-637X/787/2/169
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate effects of cosmic rays on the linear growth of the Kelvin-Helmholtz instability. Cosmic rays are treated as an adiabatic gas and allowed to diffuse along magnetic field lines. We calculated the dispersion relation of the instability for various sets of two free parameters, the ratio of the cosmic-ray pressure to the thermal gas pressure, and the diffusion coefficient. Including cosmic-ray effects, a shear layer is more destabilized and the growth rates can be enhanced in comparison with the ideal magnetohydrodynamical case. Whether the growth rate is effectively enhanced or not depends on the diffusion coefficient of cosmic rays. We obtain the criterion for effective enhancement by comparing the growing timescale of the instability with the diffusion timescale of cosmic rays. These results can be applied to various astrophysical phenomena where a velocity shear is present, such as outflows from star-forming galaxies, active galactic nucleus jet, channel flows resulting from the nonlinear development of the magnetorotational instability, and galactic disks.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] THE KELVIN-HELMHOLTZ INSTABILITY ON THE MAGNETOPAUSE
    KIVELSON, MG
    PU, ZY
    [J]. PLANETARY AND SPACE SCIENCE, 1984, 32 (11) : 1335 - 1341
  • [12] NONLINEAR KELVIN-HELMHOLTZ INSTABILITY
    陈乐山
    [J]. Applied Mathematics and Mechanics(English Edition), 1985, (11) : 1083 - 1096
  • [13] KELVIN-HELMHOLTZ INSTABILITY BY SPH
    Shadloo, M. S.
    Yildiz, M.
    [J]. PARTICLE-BASED METHODS II: FUNDAMENTALS AND APPLICATIONS, 2011, : 831 - 842
  • [14] On the Kelvin-Helmholtz instability in superfluids
    Volovik, GE
    [J]. JETP LETTERS, 2002, 75 (08) : 418 - 422
  • [15] On the Kelvin-Helmholtz instability in superfluids
    G. E. Volovik
    [J]. Journal of Experimental and Theoretical Physics Letters, 2002, 75 : 418 - 422
  • [16] KELVIN-HELMHOLTZ INSTABILITY IN TOKAMAKS
    徐复
    徐萃薇
    [J]. Science Bulletin, 1983, (08) : 1043 - 1046
  • [17] Linear growth rate for Kelvin-Helmholtz instability appearing in a moving mixing layer
    Chong, Rattana
    Lafitte, Olivier
    Cahen, Juliette
    [J]. PHYSICA SCRIPTA, 2008, T132
  • [18] The density distribution of accreting cosmic filaments as shaped by Kelvin-Helmholtz instability
    Vossberg, Ann-Christine E.
    Cantalupo, Sebastiano
    Pezzulli, Gabriele
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (02) : 2130 - 2141
  • [19] NON-LINEAR WAVE PACKETS IN THE KELVIN-HELMHOLTZ INSTABILITY
    WEISSMAN, MA
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 290 (1377): : 639 - 681
  • [20] On the Growth and Development of Non-Linear Kelvin-Helmholtz Instability at Mars: MAVEN Observations
    Poh, Gangkai
    Espley, Jared R.
    Nykyri, Katariina
    Fowler, Christopher M.
    Ma, Xuanye
    Xu, Shaosui
    Hanley, Gwen
    Romanelli, Norberto
    Bowers, Charles
    Gruesbeck, Jacob
    DiBraccio, Gina A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (09)