Renormalization group and effective potential: A simple non-perturbative approach

被引:2
|
作者
Gaite, Jose [1 ]
机构
[1] Univ Politecn Madrid, Dept Appl Phys, ETSIAE, E-28040 Madrid, Spain
来源
SCIPOST PHYSICS CORE | 2022年 / 5卷 / 03期
关键词
SCALAR FIELD-THEORY; DERIVATIVE EXPANSION; EPSILON-EXPANSION; 3; DIMENSIONS; MONTE-CARLO; ISING-MODEL; EQUATION; EXPONENTS; FLOW;
D O I
10.21468/SciPostPhysCore.5.3.044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a simple non-perturbative approach to the calculation of a field theory effective potential that is based on the Wilson or exact renormalization group. Our approach follows Shepard et al's idea [Phys. Rev. D51, 7017 (1995)] of converting the exact renormalization group into a self-consistent renormalization method. It yields a simple second order differential equation for the effective potential. The equation can be solved and its solution is compared with other non-perturbative results and with results of perturbation theory. In three dimensions, we are led to study the sextic field theory (lambda phi(4) + g phi(6)). We work out this theory at two-loop perturbative order and find the non-perturbative approach to be superior.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Non-perturbative Renormalization in Truncated Yukawa Model
    V. A. Karmanov
    Few-Body Systems, 2016, 57 : 473 - 478
  • [42] Non-perturbative renormalization in lattice field theory
    Sint, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 79 - 94
  • [43] Non-perturbative improvement and renormalization of lattice operators
    Capitani, S
    Gockeler, M
    Horsley, R
    Oelrich, H
    Perlt, H
    Pleiter, D
    Rakow, PEL
    Schierholz, G
    Schiller, A
    Stephenson, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 871 - 873
  • [44] Operator product expansion and non-perturbative renormalization
    Caracciolo, S
    Montanari, A
    Pelissetto, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 273 - 275
  • [45] Non-perturbative Renormalization in Truncated Yukawa Model
    Karmanov, V. A.
    FEW-BODY SYSTEMS, 2016, 57 (06) : 473 - 478
  • [46] Improved non-perturbative renormalization without cNGI
    Sharpe, SR
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 817 - 819
  • [47] NON-PERTURBATIVE RENORMALIZATION IN FIELD-THEORY
    WALLACE, DJ
    LECTURE NOTES IN PHYSICS, 1985, 216 : 151 - 169
  • [48] Non-perturbative renormalization in kaon decays.
    Donini, A
    Gimenez, V
    Martinelli, G
    Rossi, GC
    Talevi, M
    Testa, M
    Vladikas, A
    NUCLEAR PHYSICS B, 1997, : 883 - 885
  • [49] General framework of the non-perturbative renormalization group for non-equilibrium steady states
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (49)
  • [50] Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach
    Tarpin, Malo
    Canet, Leonie
    Pagani, Carlo
    Wschebor, Nicolas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (08)