Renormalization group and effective potential: A simple non-perturbative approach

被引:2
|
作者
Gaite, Jose [1 ]
机构
[1] Univ Politecn Madrid, Dept Appl Phys, ETSIAE, E-28040 Madrid, Spain
来源
SCIPOST PHYSICS CORE | 2022年 / 5卷 / 03期
关键词
SCALAR FIELD-THEORY; DERIVATIVE EXPANSION; EPSILON-EXPANSION; 3; DIMENSIONS; MONTE-CARLO; ISING-MODEL; EQUATION; EXPONENTS; FLOW;
D O I
10.21468/SciPostPhysCore.5.3.044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a simple non-perturbative approach to the calculation of a field theory effective potential that is based on the Wilson or exact renormalization group. Our approach follows Shepard et al's idea [Phys. Rev. D51, 7017 (1995)] of converting the exact renormalization group into a self-consistent renormalization method. It yields a simple second order differential equation for the effective potential. The equation can be solved and its solution is compared with other non-perturbative results and with results of perturbation theory. In three dimensions, we are led to study the sextic field theory (lambda phi(4) + g phi(6)). We work out this theory at two-loop perturbative order and find the non-perturbative approach to be superior.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Non-perturbative renormalization group for simple fluids
    Caillol, Jean-Michel
    MOLECULAR PHYSICS, 2006, 104 (12) : 1931 - 1950
  • [2] Non-perturbative fixed points and renormalization group improved effective potential
    Dias, A. G.
    Gomez, J. D.
    Natale, A. A.
    Quinto, A. G.
    Ferrari, A. F.
    PHYSICS LETTERS B, 2014, 739 : 8 - 12
  • [3] Non-perturbative renormalization group approach to surface growth
    Dipartimento di Fisica, INFM Unit, University of Rome La Sapienza, I-00185 Rome, Italy
    不详
    不详
    不详
    Comput Phys Commun, (358-362):
  • [4] Wilsonian renormalization group in the functional non-perturbative approach
    Vacca, Gian Paolo
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17
  • [5] Non-perturbative renormalization group approach to surface growth
    Muñoz, MA
    Bianconi, G
    Castellano, C
    Gabrielli, A
    Marsili, M
    Pietronero, L
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 358 - 362
  • [6] Non-perturbative renormalization-group approach to lattice models
    N. Dupuis
    K. Sengupta
    The European Physical Journal B, 2008, 66 : 271 - 278
  • [7] Non-perturbative renormalization-group approach to lattice models
    Dupuis, N.
    Sengupta, K.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (02): : 271 - 278
  • [8] The non-perturbative renormalization group in the ordered phase
    Caillol, Jean-Michel
    NUCLEAR PHYSICS B, 2012, 855 (03) : 854 - 884
  • [9] Non-perturbative renormalization for a renormalization group improved gauge action
    Aoki, S
    Burkhalter, R
    Fukugita, M
    Hashimoto, S
    Ide, K
    Ishizuka, N
    Iwasaki, Y
    Kanaya, K
    Kaneko, T
    Kuramashi, Y
    Lesk, V
    Okawa, M
    Taniguchi, Y
    Ukawa, A
    Yushié, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 780 - 782
  • [10] Perturbative versus non-perturbative renormalization
    Hariharakrishnan, S.
    Jentschura, U. D.
    Marian, I. G.
    Szabo, K.
    Nandori, I
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2024, 51 (08)