A flexible and parallelizable approach to genome-wide polygenic risk scores

被引:22
|
作者
Newcombe, Paul J. [1 ]
Nelson, Christopher P. [2 ,3 ]
Samani, Nilesh J. [2 ,3 ]
Dudbridge, Frank [4 ]
机构
[1] Cambridge Inst Publ Hlth, Sch Clin Med, MRC Biostat Unit, Biomed Campus, Cambridge, England
[2] Univ Leicester, Glenfield Hosp, Dept Cardiovasc Sci, Cardiovasc Res Ctr, Leicester, Leics, England
[3] Glenfield Hosp, NIHR Leicester Biomed Res Ctr, Leicester, Leics, England
[4] Univ Leicester, Dept Hlth Sci, Ctr Med, Leicester, Leics, England
基金
英国医学研究理事会; 美国国家卫生研究院; 英国惠康基金;
关键词
Bayesian variable selection; meta-GWAS; polygenic risk scores; risk prediction; summary statistics;
D O I
10.1002/gepi.22245
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The heritability of most complex traits is driven by variants throughout the genome. Consequently, polygenic risk scores, which combine information on multiple variants genome-wide, have demonstrated improved accuracy in genetic risk prediction. We present a new two-step approach to constructing genome-wide polygenic risk scores from meta-GWAS summary statistics. Local linkage disequilibrium (LD) is adjusted for in Step 1, followed by, uniquely, long-range LD in Step 2. Our algorithm is highly parallelizable since block-wise analyses in Step 1 can be distributed across a high-performance computing cluster, and flexible, since sparsity and heritability are estimated within each block. Inference is obtained through a formal Bayesian variable selection framework, meaning final risk predictions are averaged over competing models. We compared our method to two alternative approaches: LDPred and lassosum using all seven traits in the Welcome Trust Case Control Consortium as well as meta-GWAS summaries for type 1 diabetes (T1D), coronary artery disease, and schizophrenia. Performance was generally similar across methods, although our framework provided more accurate predictions for T1D, for which there are multiple heterogeneous signals in regions of both short- and long-range LD. With sufficient compute resources, our method also allows the fastest runtimes.
引用
收藏
页码:730 / 741
页数:12
相关论文
共 50 条
  • [41] Predictive validity of genome-wide polygenic scores for alcohol use from adolescence to young adulthood
    Kandaswamy, Radhika
    Allegrini, Andrea
    Plomin, Robert
    von Stumm, Sophie
    [J]. DRUG AND ALCOHOL DEPENDENCE, 2021, 219
  • [42] Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores
    Adrian I. Campos
    Shinichi Namba
    Shu-Chin Lin
    Kisung Nam
    Julia Sidorenko
    Huanwei Wang
    Yoichiro Kamatani
    Ling-Hua Wang
    Seunggeun Lee
    Yen-Feng Lin
    Yen-Chen Anne Feng
    Yukinori Okada
    Peter M. Visscher
    Loic Yengo
    [J]. Nature Genetics, 2023, 55 : 1769 - 1776
  • [43] Cognitive Capacity Genome-Wide Polygenic Scores Identify Individuals with Slower Cognitive Decline in Aging
    Joo, Yoonjung Yoonie
    Cha, Jiook
    Freese, Jeremy
    Hayes, M. Geoffrey
    [J]. GENES, 2022, 13 (08)
  • [44] Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores
    Campos, Adrian I.
    Namba, Shinichi
    Lin, Shu-Chin
    Nam, Kisung
    Sidorenko, Julia
    Wang, Huanwei
    Kamatani, Yoichiro
    Wang, Ling-Hua
    Lee, Seunggeun
    Lin, Yen-Feng
    Feng, Yen-Chen Anne
    Okada, Yukinori
    Visscher, Peter M.
    Yengo, Loic
    [J]. NATURE GENETICS, 2023, 55 (10) : 1769 - +
  • [45] Genome editing, Goldilocks and polygenic risk scores
    Gyngell, Christopher
    Bowman-Smart, Hilary
    Savulescu, Julian
    [J]. JOURNAL OF MEDICAL ETHICS, 2019, 45 (08) : 530 - 531
  • [46] Development and Replication of a Genome-Wide Polygenic Risk Score for Chronic Back Pain
    Tsepilov, Yakov A.
    Elgaeva, Elizaveta E.
    Nostaeva, Arina V.
    Compte, Roger
    Kuznetsov, Ivan A.
    Karssen, Lennart C.
    Freidin, Maxim B.
    Suri, Pradeep
    Williams, Frances M. K.
    Aulchenko, Yurii S.
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (06):
  • [47] Genome-wide association study and polygenic risk scores of retinal thickness across the cognitive continuum: data from the NORFACE cohort
    Saez, Maria Eugenia
    Garcia-Sanchez, Ainhoa
    de Rojas, Itziar
    Alarcon-Martin, Emilio
    Martinez, Joan
    Cano, Amanda
    Garcia-Gonzalez, Pablo
    Puerta, Raquel
    Olive, Claudia
    Capdevila, Maria
    Garcia-Gutierrez, Fernando
    Castilla-Marti, Miguel
    Castilla-Marti, Luis
    Espinosa, Ana
    Alegret, Montserrat
    Ricciardi, Mario
    Pytel, Vanesa
    Valero, Sergi
    Tarraga, Lluis
    Boada, Merce
    Ruiz, Agustin
    Marquie, Marta
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2024, 16 (01)
  • [48] Genome-wide association study and polygenic risk scores of retinal thickness across the cognitive continuum: data from the NORFACE cohort
    María Eugenia Sáez
    Ainhoa García-Sánchez
    Itziar de Rojas
    Emilio Alarcón-Martín
    Joan Martínez
    Amanda Cano
    Pablo García-González
    Raquel Puerta
    Clàudia Olivé
    Maria Capdevila
    Fernando García-Gutiérrez
    Miguel Castilla-Martí
    Luis Castilla-Martí
    Ana Espinosa
    Montserrat Alegret
    Mario Ricciardi
    Vanesa Pytel
    Sergi Valero
    Lluís Tárraga
    Mercè Boada
    Agustín Ruiz
    Marta Marquié
    [J]. Alzheimer's Research & Therapy, 16
  • [49] Not Only Gene Discovery: Genome-wide Association Studies and Polygenic Risk Scores as Tools to Dissect the Heterogeneity of Major Depressive Disorder
    Polimanti, Renato
    [J]. BIOLOGICAL PSYCHIATRY, 2022, 92 (03) : 177 - 178
  • [50] Genome-wide polygenic risk score for rheumatoid arthritis prediction in postmenopausal women
    Xu, Yingke
    Wu, Qing
    [J]. JOURNAL OF GENE MEDICINE, 2024, 26 (01):