Heparanase-1-induced shedding of heparan sulfate from syndecan-1 in hepatocarcinoma cell facilitates lymphatic endothelial cell proliferation via VEGF-C/ERK pathway

被引:34
|
作者
Yu, Shengjin [1 ]
Lv, Huiming [1 ]
Zhang, He [1 ]
Jiang, Yu [1 ]
Hong, Yu [1 ]
Xia, Rongjun [1 ]
Zhang, Qifang [1 ]
Ju, Weiwei [1 ]
Jiang, Lili [1 ]
Ou, Geng [4 ]
Zhang, Jinhui [1 ]
Wang, Shujing [3 ]
Zhang, Jianing [2 ]
机构
[1] Inst Mol Med, Med Coll Eastern Liaoning Univ, Dandong 118000, Dandong 118000, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Life Sci & Med, 2 Dagong Rd, Panjin 124221, Liaoning, Peoples R China
[3] Dalian Med Univ, Inst Glycobiol, Lvshun South Rd, Dalian 116044, Liaoning, Peoples R China
[4] China Med Univ, Affiliated Hosp 1, 116 Linjiang Back St, Shenyang 110000, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Heparanase-1; Syndecan-1; Heparan sulfate; VEGF-C; PROMOTE; PROTEOGLYCANS; MECHANISMS; ADHESION; CANCER;
D O I
10.1016/j.bbrc.2017.02.060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heparanase-1/syndecan-1 axis plays critical roles in tumorigenesis and development. The main mechanism includes heparanase-1 (HPA-1) degrades the heparan sulfate chain of syndecan-1 (SDC-1), and the following shedding of heparan sulfate from tumor cell releases and activates SDC-1 sequestered growth factors. However, the significance of Heparanase-1/syndecan-1 axis and its effects on the microenvironment of lymphatic metastasis in hepatocellular carcinogenesis (HCC) procession have not been reported. Herein, we found that IPA-1 could degrade the heparan sulfate on hepatocarcinoma cell surface. Importantly, HPA-1-induced shedding of heparan sulfate chain from SDC-1 facilitated the release of vascular endothelial growth factor C (VEGF-C) from SDC-1/VEGF-C complex into the medium of hepatocarcinoma cell. Further studies indicated that VEGF-C secretion from hepatocarcinoma cell promoted lymphatic endothelial cell growth through activating extracellular signal-regulated kinase (ERIC) signaling. Taken together, this study reveals a novel existence of Heparanase-1/syndecan-1 axis in hepatocarcinoma cell and its roles in the cross-talking with the microenvironment of lymphatic metastasis. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 439
页数:8
相关论文
共 50 条
  • [31] Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation
    Pan, Christopher C.
    Bloodworth, Jeffrey C.
    Mythreye, Karthikeyan
    Lee, Nam Y.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 424 (03) : 620 - 623
  • [32] Endothelin-1 triggers human peritoneal mesothelial cells' proliferation via ERK1/2-Ets-1 signaling pathway and contributes to endothelial cell angiogenesis
    Zhu, Nan
    Gu, Lijie
    Jia, Jieshuang
    Wang, Xuan
    Wang, Ling
    Yang, Man
    Yuan, Weijie
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3539 - 3546
  • [33] Norisoboldine Suppresses VEGF-Induced Endothelial Cell Migration via the cAMP-PKA-NF-κB/Notch1 Pathway
    Lu, Qian
    Tong, Bei
    Luo, Yubin
    Sha, Li
    Chou, Guixin
    Wang, Zhengtao
    Xia, Yufeng
    Dai, Yue
    PLOS ONE, 2013, 8 (12):
  • [34] ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1
    Gao, G
    Plaas, A
    Thompson, VP
    Jin, S
    Zuo, FR
    Sandy, JD
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (11) : 10042 - 10051
  • [35] BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis
    Scharpfenecker, Marion
    van Dinther, Maarten
    Liu, Zhen
    van Bezooijen, Rutger L.
    Zhao, Qinghai
    Pukac, Laurie
    Lowik, Clemens W. G. M.
    ten Dijke, Peter
    JOURNAL OF CELL SCIENCE, 2007, 120 (06) : 964 - 972
  • [36] Betaine alleviates high glucose-induced mesangial cell proliferation by inhibiting cell proliferation and extracellular matrix deposition via the AKT/ERK1/2/p38 MAPK pathway
    Li, Xianhui
    Wang, Li
    Ma, Huining
    MOLECULAR MEDICINE REPORTS, 2019, 20 (02) : 1754 - 1760
  • [37] Anlotinib Inhibits Cell Proliferation, Migration and Invasion via Suppression c-met Pathway and Activation of ERK1/2 Pathway in H446 Cells
    Tang, Xiali
    Zheng, Ying
    Jiao, Demin
    Chen, Jun
    Liu, Xibang
    Xiong, Shan
    Chen, Qingyong
    ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2021, 21 (06) : 747 - 755
  • [38] PKC/Raf/MEK/ERK signaling pathway modulates native-LDL-induced E2F-1 gene expression and endothelial cell proliferation
    Pintus, G
    Tadolini, B
    Posadino, AM
    Sanna, B
    Debidda, M
    Carru, C
    Deiana, L
    Ventura, C
    CARDIOVASCULAR RESEARCH, 2003, 59 (04) : 934 - 944
  • [39] Taiwanin C Selectively Inhibits Arecoline and 4-NQO-Induced Oral Cancer Cell Proliferation Via ERK1/2 Inactivation
    Lin, Kuan-Ho
    Shibu, Marthandam Asokan
    Kuo, Yueh-Hsiung
    Chen, Yueh-Chiu
    Hsu, Hsi-Hsien
    Bau, Da-Tian
    Chen, Ming-Cheng
    Tu, Chuan-Chou
    Viswanadha, Vijaya Padma
    Huang, Chih-Yang
    ENVIRONMENTAL TOXICOLOGY, 2017, 32 (01) : 62 - 69
  • [40] Docosahexaenoic Acid Inhibits Vascular Endothelial Growth Factor (VEGF)-Induced Cell Migration via the GPR120/PP2A/ERK1/2/eNOS Signaling Pathway in Human Umbilical Vein Endothelial Cells
    Chao, Che-Yi
    Lii, Chong-Kuei
    Ye, Siou-Yu
    Li, Chien-Chun
    Lu, Chia-Yang
    Lin, Ai-Hsuan
    Liu, Kai-Li
    Chen, Haw-Wen
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (18) : 4152 - 4158