s-Convex fuzzy processes

被引:0
|
作者
Chalco-Cano, Y
Rojas-Medar, MA
Osuna-Gómez, R
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[2] Univ Seville, Fac Matemat, Dept Estadist & Invest Operat, E-41012 Seville, Spain
基金
巴西圣保罗研究基金会;
关键词
fuzzy sets; s-convex process;
D O I
10.1016/S0898-1221(04)90133-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of s-convex fuzzy processes. We study their properties and we give some applications. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1411 / 1418
页数:8
相关论文
共 50 条
  • [31] Notions of generalized s-convex functions on fractal sets
    Adem Kılıçman
    Wedad Saleh
    Journal of Inequalities and Applications, 2015
  • [32] Remarks on some inequalities for s-convex functions and applications
    Zheng Liu
    Journal of Inequalities and Applications, 2015
  • [33] On new general integral inequalities for s-convex functions
    Iscan, Imdat
    Set, Erhan
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 306 - 315
  • [34] New inequalities of Steffensen's type for s-convex functions
    Alomari, Mohammad W.
    AFRIKA MATEMATIKA, 2014, 25 (04) : 1053 - 1062
  • [35] Hadamard-type inequalities for s-convex functions
    Kirmaci, U. S.
    Bakula, M. Klaricic
    Ozdemir, M. E.
    Pecaric, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) : 26 - 35
  • [36] An Operator Version of the Jensen Inequality for s-Convex Functions
    Nikoufar, Ismail
    Saeedi, Davuod
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [37] Notions of generalized s-convex functions on fractal sets
    Kilicman, Adem
    Saleh, Wedad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [38] COORDINATE STRONGLY s-CONVEX FUNCTIONS AND RELATED RESULTS
    Ullah, Syed Zaheer
    Khan, Muhammad Adil
    Khan, Zareen A.
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 829 - 843
  • [39] Some perturbed trapezoid inequalities for convex, s-convex and tgs-convex functions and applications
    Tunc, Mevlut
    Sanal, Ummugulsum
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 87 - 102
  • [40] MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Djenaoui, Meriem
    Meftah, Badreddine
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (03): : 325 - 338