Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite

被引:111
|
作者
Xu, Congbin [1 ,2 ]
Yang, Wenjie [3 ]
Liu, Weijiang [3 ]
Sun, Hongliang [3 ]
Jiao, Chunlei [1 ]
Lin, Ai-jun [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Environm Planning, Beijing 100012, Peoples R China
来源
关键词
Zero-valent iron(ZVI); Expanded graphite(EG); Cr(VI) removal; Mechanism; AQUEOUS-SOLUTIONS; ACTIVATED CARBON; HEXAVALENT CHROMIUM; CR VI; DEGRADATION; ADSORPTION; REDUCTION; REACTIVITY; PARTICLES; WATER;
D O I
10.1016/j.jes.2017.11.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Zero-valent iron (ZVI) was loaded on expanded graphite (EG) to produce a composite material (EG-ZVI) for efficient removal of hexavalent chromium (Cr(VI)). EG and EG-ZVI were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) analysis. EG-ZVI had a high specific surface area and contained sub-micron sized particles of zero-valent iron. Batch experiments were employed to evaluate the Cr(VI) removal performance. The results showed that the Cr(VI) removal rate was 98.80% for EG-ZVI, which was higher than that for both EG (10.00%) and ZVI (29.80%). Furthermore, the removal rate of Cr(VI) by EG-ZVI showed little dependence on solution pH within a pH range of 1-9. Even at pH 11, a Cr(VI) removal rate of 62.44% was obtained after reaction for 1 hr. EG-ZVI could enhance the removal of Cr(VI) via chemical reduction and physical adsorption, respectively. X-ray photoelectron spectroscopy (XPS) was used to analyze the mechanisms of Cr(VI) removal, which indicated that the ZVI loaded on the surface was oxidized, and the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)-Fe(III) hydroxide/oxyhydroxide on the surface of EG-ZVI. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:14 / 22
页数:9
相关论文
共 50 条
  • [21] Enhanced Cr(VI) removal by biochar-loaded zero-valent iron coupled with weak magnetic field
    Zhou, Sihai
    Wang, Liping
    Zhang, Qiuya
    Cao, Yu
    Zhang, Yanan
    Kang, Xudong
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 47
  • [22] The superior performance of silica gel supported nano zero-valent iron for simultaneous removal of Cr (VI)
    Eslam Salama
    Mahmoud Samy
    Hassan Shokry
    Gehan El-Subruiti
    Asmaa El-Sharkawy
    Hesham Hamad
    Marwa Elkady
    Scientific Reports, 12 (1)
  • [23] The superior performance of silica gel supported nano zero-valent iron for simultaneous removal of Cr (VI)
    Salama, Eslam
    Samy, Mahmoud
    Shokry, Hassan
    El-Subruiti, Gehan
    El-Sharkawy, Asmaa
    Hamad, Hesham
    Elkady, Marwa
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [24] Performance and mechanism of Cr(VI) removal by resin-supported nanoscale zero-valent iron (nZVI): role of nZVI distribution
    Wang, Yuan
    Song, Yaqin
    Shi, Chenfei
    Shang, Jingge
    Chen, Jianqiu
    Du, Qiong
    DESALINATION AND WATER TREATMENT, 2019, 166 : 344 - 352
  • [25] Efficient Removal of Cr(VI) by Bamboo-Derived Biochar Supported Nano Zero-Valent Iron: Insights into Performance and Mechanism
    Xu, Yiqun
    Guo, Jiaming
    Wen, Siqi
    Shi, Xiaoyu
    Zhu, Yunlong
    Lu, Jianbing
    Gao, Yang
    Zhang, Mingjuan
    Xue, Wenjing
    WATER AIR AND SOIL POLLUTION, 2025, 236 (02):
  • [26] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Zhang, Yuling
    Li, Yimin
    Li, Jianfa
    Sheng, Guodong
    Zhang, Yun
    Zheng, Xuming
    CHEMICAL ENGINEERING JOURNAL, 2012, 185 : 243 - 249
  • [27] Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron
    Ordinartsev, D. P.
    Pechishcheva, N., V
    Estemirova, S. Kh
    Kim, A., V
    Shunyaev, K. Yu
    HYDROMETALLURGY, 2022, 208
  • [28] Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron
    Li, Y. (liym@usx.edu.cn), 1600, Elsevier B.V. (185-186):
  • [29] Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron
    Li, Meirong
    Tang, Chenliu
    Zhang, Weixian
    Ling, Lan
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 846 - 856
  • [30] Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon
    Wu, Limei
    Liao, Libing
    Lv, Guocheng
    Qin, Faxiang
    He, Yujuan
    Wang, Xiaoyu
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 254 : 277 - 283