Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions

被引:12
|
作者
Suzuki, Kazuki [1 ]
Kashiwa, Naoya [2 ]
Nomura, Kota [2 ]
Asiloglu, Rasit [3 ]
Harada, Naoki [4 ]
机构
[1] Niigata Univ, Ctr Transdisciplinary Res, Inst Res Promot, Nishi Ku, 8050 Ikarashi 2, Niigata 9502181, Japan
[2] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, 8050 Ikarashi 2, Niigata 9502181, Japan
[3] Niigata Univ, Fac Agr, Nishi Ku, 8050 Ikarashi 2, Niigata 9502181, Japan
[4] Niigata Univ, Inst Sci & Technol, Nishi Ku, 8050 Ikarashi 2, Niigata 9502181, Japan
关键词
Bacterial community; Calcium cyanamide; Local placement; Nitrous oxide; Soil pH; NITRIFICATION INHIBITOR DICYANDIAMIDE; LIME-NITROGEN APPLICATION; MICROBIAL COMMUNITIES; DEEP PLACEMENT; OXIDE EMISSION; COATED UREA; DENITRIFICATION; DMPP; FERTILIZATION; STRATEGIES;
D O I
10.1007/s00374-020-01523-3
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Calcium cyanamide, a component of lime-N, is gradually hydrolyzed into urea in soil and generates dicyandiamide, a nitrification inhibitor. Calcium cyanamide also increases soil pH. In this study, we determined the effects of calcium cyanamide application and the consequent increase in soil pH on N2O emissions and soil bacterial community composition. Five fertilizers (i.e., urea (U), cyanamide (CN), calcium cyanamide (CaCN), calcium hydroxide (Ca), and urea plus calcium hydroxide (CaU)) were applied using two methods (i.e., whole mixing and local placement in the mid layer) in a soil microcosm experiment. The control (CT) was left unfertilized. Compared with the U treatment, the CN, CaCN, and CaU treatments significantly suppressed N2O emissions. Fertilizer placement had less of an effect on N2O emissions. On day 7 after fertilizer application, soil bacterial alpha diversity indices were reduced in the CaCN, CN, and CaU treatments, and Planococcaceae was the dominant bacterial family. Compared with the bacterial communities in the other treatments, those in the CaCN, CN, and CaU treatments were predicted to contain fewer nitrification and denitrification genes. The soil bacterial community composition gradually shifted from that in CT as the soil pH increased. Our results suggest that, apart from the nitrification inhibitor effect of cyanamide, shaping the bacterial community compositions by the increase in soil pH under high urea concentrations could play an essential role in suppressing N2O emissions from soil.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [41] Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil
    Shaaban, Muhammad
    Peng, Qi-an
    Bashir, Saqib
    Wu, Yupeng
    Younas, Aneela
    Xu, Xiangyu
    Rashti, Mehran Razaei
    Abid, Muhammad
    Zafar-ul-Hye, Muhammad
    Nunez-Delgado, Avelino
    Horwath, William R.
    Jiang, Yanbin
    Lin, Shan
    Hu, Ronggui
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 250
  • [42] Soil N2O emissions under conventional tillage conditions and from forest soil
    Sosulski, Tomasz
    Szara, Ewa
    Szymanska, Magdalena
    Stepien, Wojciech
    Rutkowska, Beata
    Szulc, Wieslaw
    SOIL & TILLAGE RESEARCH, 2019, 190 : 86 - 91
  • [43] CONTRIBUTIONS OF AUTOTROPHIC AND HETEROTROPHIC NITRIFIERS TO SOIL NO AND N2O EMISSIONS
    TORTOSO, AC
    HUTCHINSON, GL
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) : 1799 - 1805
  • [44] Multistate assessment of wetland restoration on CO2 and N2O emissions and soil bacterial communities
    Kluber, Laurel A.
    Miller, Jarrod O.
    Ducey, Thomas F.
    Hunt, Patrick G.
    Lang, Megan
    Ro, Kyoung S.
    APPLIED SOIL ECOLOGY, 2014, 76 : 87 - 94
  • [45] Sensitive control of N2O emissions and microbial community dynamics by organic fertilizer and soil interactions
    Meng, Xiaoyi
    Ma, Chun
    Petersen, Soren O.
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (07) : 771 - 788
  • [46] Sensitive control of N2O emissions and microbial community dynamics by organic fertilizer and soil interactions
    Xiaoyi Meng
    Chun Ma
    Søren O. Petersen
    Biology and Fertility of Soils, 2022, 58 : 771 - 788
  • [47] Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: Implication for N2O emissions
    Zhu, Kun
    Ye, Xin
    Ran, Hongyu
    Zhang, Peixuan
    Wang, Gang
    SOIL BIOLOGY & BIOCHEMISTRY, 2022, 166
  • [48] Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield
    Elli, Elvis F.
    Ciampitti, Ignacio A.
    Castellano, Michael J.
    Purcell, Larry C.
    Naeve, Seth
    Grassini, Patricio
    La Menza, Nicolas C.
    Moro Rosso, Luiz
    de Borja Reis, Andre F.
    Kovacs, Peter
    Archontoulis, Sotirios V.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [49] Soil N2O emissions following cover-crop residues application under two soil moisture conditions
    Pimentel, Laisa Gouveia
    Weiler, Douglas Adams
    Pedroso, Gabriel Munhoz
    Bayer, Cimelio
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2015, 178 (04) : 631 - 640
  • [50] Soil engineering ants increase CO2 and N2O emissions by affecting mound soil physicochemical characteristics from a marsh soil: A laboratory study
    Wu, Haitao
    Lu, Xianguo
    Tong, Shouzheng
    Batzer, Darold P.
    APPLIED SOIL ECOLOGY, 2015, 87 : 19 - 26