An investigation of different Nd1.8Ce0.2CuO4+δ-Ce0.9Gd0.1O2-δ composite cathodes

被引:9
|
作者
Khandale, A. P. [1 ]
Bhoga, S. S. [1 ]
机构
[1] RTM Nagpur Univ, Dept Phys, Nagpur 440033, Maharashtra, India
关键词
dc conductivity; electrochemical impedance spectroscopy; composite cathode; intermediate-temperature solid oxide fuelcells; OXIDE FUEL-CELL; ELECTROCHEMICAL PERFORMANCE; OXYGEN REDUCTION; AC-IMPEDANCE; THIN-FILM; ELECTRODE PROPERTIES; SUBSTITUTED ND2CUO4; POLARIZATION; OPTIMIZATION; INTERFACE;
D O I
10.1016/j.electacta.2014.03.031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The compositions of (100-x)Nd1.8Ce0.2CuO4+delta:(x)Ce0.9Gd0.1O2-delta (x = 00, 10, 20, 30, 40 and 50 vol.%) composite system, synthesized by ball milling appropriate mixture followed by sintering at 1000 degrees C for 4 h, are of superfine crystalline nature (crystallite size 106 to 253 nm). The dc conductivity decreases with increase in Ce0.9Gd0.1O2-delta second phase. The increase in Ce0.9Gd0.1O2-delta content in composites reduces the crystallite size of Nd1.8Ce0.2CuO4+delta. Symmetric cells in the configuration given by electrode/electrolyte/electrode with gadolinia-doped ceria (GDC) as electrolyte were fabricated by spin coating the ink of cathode. The minimum area specific resistance (ASR) value of 0.34 Omega cm(2) was obtained at a temperature of 700 degrees C, for (70)Nd1.8Ce0.2CuO4+delta:(30)Ce0.9Gd0.1O2-delta a composite cathode, and directly correlated with optimum dispersion of gadolinia-doped ceria into Nd1.8Ce0.2CuO4+delta matrix. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:439 / 445
页数:7
相关论文
共 50 条
  • [21] Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process
    Rodrigo, K.
    Heiroth, S.
    Dobeli, M.
    Pryds, N.
    Linderoth, S.
    Schou, J.
    Lippert, T.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2010, 12 (03): : 511 - 517
  • [22] Stable oxygen permeable membrane with Ce0.9Gd0.1O2-δ protective layer for syngas production
    Liu, Mengke
    Jia, Lujian
    Zhang, Yan
    He, Guanghu
    Jiang, Heqing
    Cao, Zhengwen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 325
  • [23] Non-stoichiometries of (Nd0.1Ce0.9)O2-x and (Gd0.1Nd0.1Ce0.8)O2-x
    Osaka, Masahiko
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 475 (1-2) : L31 - L33
  • [24] Preparation and Electrochemical Properties of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ-Ce0.9Gd0.1O2-δComposite Cathode
    Sheng Shuang
    Zhao Hui
    Hao Ju-Hong
    Sun Li-Ping
    Huo Li-Hua
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2016, 32 (12) : 2143 - 2150
  • [25] Sm0.5Sr0.5CoO3-δ infiltrated Ce0.9Gd0.1O2-δ composite cathodes for high performance protonic ceramic fuel cells
    Zhao, Ling
    Li, Geng
    Chen, Kongfa
    Ling, Yihan
    Cui, Yuexiao
    Gui, Liangqi
    He, Beibei
    JOURNAL OF POWER SOURCES, 2016, 333 : 24 - 29
  • [26] Mechanical properties of Ce0.9Gd0.1O2-x and Ce0.9Gd0.1O2-x+Al2O3 composites
    Routbort, J.L.
    Goretta, K.C.
    Doshi, R.
    Richards, V.L.
    Krumpelt, M.
    Wolfenstine, J.
    de Arellano-Lopez, A.R.
    Ceramic Engineering and Science Proceedings, 1998, 19 (03): : 189 - 196
  • [27] Mechanical properties of Ce0.9Gd0.1O2-x and Ce0.9Gd0.1O2-x+Al2O3 composites
    Routbort, JL
    Goretta, KC
    Doshi, R
    Richards, VL
    Krumpelt, M
    Wolfenstine, J
    de Arellano-López, AR
    22ND ANNUAL CONFERENCE ON COMPOSITES, ADVANCED CERAMICS, MATERIALS, AND STRUCTURES: A, 1998, 19 (03): : 189 - 196
  • [28] Effects of CO2 and H2O on Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode and modification by a Ce0.9Gd0.1O2-δ coating
    Wang, Jingle
    Yang, Zhibin
    Ba, Liming
    Chen, Yu
    Ge, Ben
    Peng, Suping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 827 : 79 - 84
  • [29] Enhanced conductivity in pulsed laser deposited Ce0.9Gd0.1O2-δ/SrTiO3 heterostructures
    Kant, K. Mohan
    Esposito, V.
    Pryds, N.
    APPLIED PHYSICS LETTERS, 2010, 97 (14)
  • [30] Synthesis and Properties of Solid Electrolyte Ce0.9Gd0.1O2-δ with Co, Cu, Mn, Zn Doping
    Nikonov, A. V.
    Spirin, A. V.
    Khrustov, V. R.
    Paranin, S. N.
    Pavzderin, N. B.
    Kuterbekov, K. A.
    Nurakhmetov, T. N.
    Atazhan, Y. K.
    INORGANIC MATERIALS, 2016, 52 (07) : 708 - 715