Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation

被引:24
|
作者
Liu, Wei [1 ]
Su, Fulin [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Dept Informat Engn, Harbin 150001, Peoples R China
关键词
Feature extraction; Semantics; Image segmentation; Data models; Remote sensing; Labeling; Training; Domain adaptation (DA); generative adversarial networks (GANs); remote sensing image; semantic segmentation; transfer learning; CLASSIFICATION;
D O I
10.1109/LGRS.2019.2956490
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid development of deep learning technology, semantic segmentation methods have been widely used in remote sensing data. A pretrained semantic segmentation model usually cannot perform well when the testing images (target domain) have an obvious difference from the training data set (source domain), while a large enough labeled data set is almost impossible to be acquired for each scenario. Unsupervised domain adaptation (DA) techniques aim to transfer knowledge learned from the source domain to a totally unlabeled target domain. By reducing the domain shift, DA methods have shown the ability to improve the classification accuracy for the target domain. Hence, in this letter, we propose an unsupervised adversarial DA network that converts deep features into 2-D feature curves and reduces the discrepancy between curves from the source domain and curves from the target domain based on a conditional generative adversarial networks (cGANs) model. Our proposed DA network is able to improve the semantic labeling accuracy when we apply a pretrained semantic segmentation model to the target domain. To test the effectiveness of the proposed method, experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) 2-D Semantic Labeling data set. Results show that our proposed network is able to stably improve overall accuracy not only when the source and target domains are from the same city but with different building styles but also when the source and target domains are from different cities and acquired by different sensors. By comparing with a few state-of-the-art DA methods, we demonstrate that our proposed method achieves the best cross-domain semantic segmentation performance.
引用
收藏
页码:1978 / 1982
页数:5
相关论文
共 50 条
  • [1] Semantic adaptation network for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    [J]. NEUROCOMPUTING, 2021, 454 : 313 - 323
  • [2] Unsupervised Domain Adaptation Using Generative Adversarial Networks for Semantic Segmentation of Aerial Images
    Benjdira, Bilel
    Bazi, Yakoub
    Koubaa, Anis
    Ouni, Kais
    [J]. REMOTE SENSING, 2019, 11 (11)
  • [3] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    [J]. TECHNOLOGIES, 2020, 8 (02)
  • [4] Multichannel Semantic Segmentation with Unsupervised Domain Adaptation
    Watanabe, Kohei
    Saito, Kuniaki
    Ushiku, Yoshitaka
    Harada, Tatsuya
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 600 - 616
  • [5] Geometric Unsupervised Domain Adaptation for Semantic Segmentation
    Guizilini, Vitor
    Li, Jie
    Ambrus, Rares
    Gaidon, Adrien
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8517 - 8527
  • [6] Unsupervised Domain Adaptation for Referring Semantic Segmentation
    Shi, Haonan
    Pan, Wenwen
    Zhao, Zhou
    Zhang, Mingmin
    Wu, Fei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5807 - 5818
  • [7] Unsupervised domain adaptation network for medical image segmentation with generative adversarial networks
    Huang, Xiji
    Chen, Lingna
    [J]. PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 380 - 382
  • [8] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13): : 7709 - 7721
  • [9] Unsupervised domain adaptation with adversarial distribution adaptation network
    Qiang Zhou
    Wen’an Zhou
    Shirui Wang
    Ying Xing
    [J]. Neural Computing and Applications, 2021, 33 : 7709 - 7721
  • [10] Hybrid adversarial network for unsupervised domain adaptation
    Zhang, Changchun
    Zhao, Qingjie
    Wang, Yu
    [J]. INFORMATION SCIENCES, 2020, 514 : 44 - 55