q-Virasoro algebra, q-conformal dimensions and free q-superstring

被引:9
|
作者
Chaichian, M
Presnajder, P
机构
[1] UNIV HELSINKI,HIGH ENERGY PHYS RES CTR,FIN-00014 HELSINKI,FINLAND
[2] COMENIUS UNIV BRATISLAVA,DEPT THEORET PHYS,SK-84215 BRATISLAVA,SLOVAKIA
关键词
quantum groups; q-Virasoro algebra; string theory; point-splitting regularization;
D O I
10.1016/S0550-3213(96)00568-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The commutators of standard Virasoro generators and fields generate various representations of the centreless Virasoro algebra depending on a conformal dimension J of the field in question (J is related to the Bargmann index of SU(1,1) generated by L(m), m = 0, +/- 1). We introduce the notion of q-conformal dimension for various oscillator realizations of q-deformed Virasoro (super)algebras proposed earlier, We use the field theoretical approach introduced recently in which the q-Virasoro currents L(alpha)(z) are expressed as Schwinger-like point-split normally ordered quadratic expressions in elementary fields, We extend this approach and probe the elementary fields A(z) (the q-superstring coordinate, momentum and fermionic field) and their powers by the q-Virasoro generators L(m)(alpha) (i.e. we calculate the commutators [L(m)(alpha), A(z)]) and show that to all of them can be assigned just the standard non-deformed conformal dimension.
引用
收藏
页码:466 / 478
页数:13
相关论文
共 50 条
  • [1] Aspects of q-virasoro algebra
    Polychronakos, A.P.
    Proceedings of the Argonne Workshop, 1991,
  • [2] q-Virasoro algebra and vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 1258 - 1277
  • [3] Q-DEFORMATIONS OF VIRASORO ALGEBRA AND CONFORMAL DIMENSIONS
    CHAICHIAN, M
    ISAEV, AP
    LUKIERSKI, J
    POPOWICZ, Z
    PRESNAJDER, P
    PHYSICS LETTERS B, 1991, 262 (01) : 32 - 38
  • [4] Q-VIRASORO ALGEBRA AND ITS RELATION TO THE Q-DEFORMED KDV SYSTEM
    CHAICHIAN, M
    POPOWICZ, Z
    PRESNAJDER, P
    PHYSICS LETTERS B, 1990, 249 (01) : 63 - 65
  • [5] q-Virasoro/W algebra at root of unity and parafermions
    Itoyama, H.
    Oota, T.
    Yoshioka, R.
    NUCLEAR PHYSICS B, 2014, 889 : 25 - 35
  • [6] Solving q-Virasoro constraints
    Lodin, Rebecca
    Popolitov, Aleksandr
    Shakirov, Shamil
    Zabzine, Maxim
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (01) : 179 - 210
  • [7] q-Virasoro Modular Triple
    Fabrizio Nieri
    Yiwen Pan
    Maxim Zabzine
    Communications in Mathematical Physics, 2019, 366 : 397 - 422
  • [8] REALIZATIONS OF THE Q-HEISENBERG AND Q-VIRASORO ALGEBRAS
    OH, CH
    SINGH, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3439 - 3444
  • [9] q-Virasoro Modular Triple
    Nieri, Fabrizio
    Pan, Yiwen
    Zabzine, Maxim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (01) : 397 - 422
  • [10] Solving q-Virasoro constraints
    Rebecca Lodin
    Aleksandr Popolitov
    Shamil Shakirov
    Maxim Zabzine
    Letters in Mathematical Physics, 2020, 110 : 179 - 210