REALIZATIONS OF THE Q-HEISENBERG AND Q-VIRASORO ALGEBRAS

被引:7
|
作者
OH, CH
SINGH, K
机构
[1] Dept. of Phys., Nat. Univ. of Singapore
来源
关键词
D O I
10.1088/0305-4470/27/10/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give field-theoretic realizations of both the q-Heisenberg and the q-Virasoro algebra. In particular, we obtain the operator product expansions among the current and the energy-momentum tensor obtained using the Sugawara construction.
引用
收藏
页码:3439 / 3444
页数:6
相关论文
共 50 条
  • [1] q-Virasoro algebra and vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 1258 - 1277
  • [2] Unitary Representations of the q-Virasoro Algebras
    贾雨亭
    [J]. Communications in Mathematical Research, 1997, (04) : 449 - 452
  • [3] Central extensions of classical and quantum q-Virasoro algebras
    Avan, J
    Frappat, L
    Rossi, M
    Sorba, P
    [J]. PHYSICS LETTERS A, 1999, 251 (01) : 13 - 24
  • [4] Solving q-Virasoro constraints
    Lodin, Rebecca
    Popolitov, Aleksandr
    Shakirov, Shamil
    Zabzine, Maxim
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (01) : 179 - 210
  • [5] q-Virasoro Modular Triple
    Fabrizio Nieri
    Yiwen Pan
    Maxim Zabzine
    [J]. Communications in Mathematical Physics, 2019, 366 : 397 - 422
  • [6] q-Virasoro Modular Triple
    Nieri, Fabrizio
    Pan, Yiwen
    Zabzine, Maxim
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (01) : 397 - 422
  • [7] Solving q-Virasoro constraints
    Rebecca Lodin
    Aleksandr Popolitov
    Shamil Shakirov
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2020, 110 : 179 - 210
  • [8] q-Virasoro algebra and affine Kac-Moody Lie algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    [J]. JOURNAL OF ALGEBRA, 2019, 534 : 168 - 189
  • [9] q-Virasoro constraints in matrix models
    Nedelin, Anton
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [10] Correction to: Solving q-Virasoro constraints
    Rebecca Lodin
    Aleksandr Popolitov
    Shamil Shakirov
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2020, 110 (10) : 2855 - 2855