The AETHER project: development of air-breathing electric propulsion for VLEO missions

被引:17
|
作者
Andreussi, T. [1 ]
Ferrato, E. [1 ]
Paissoni, C. A. [1 ]
Kitaeva, A. [1 ]
Giannetti, V [1 ]
Piragino, A. [1 ]
Schaeff, S. [2 ]
Katsonis, K. [3 ]
Berenguer, Ch [3 ]
Kovacova, Z. [4 ]
Neubauer, E. [4 ]
Tisaev, M. [5 ]
Karadag, B. [5 ]
Fabris, A. Lucca [5 ]
Smirnova, M. [6 ]
Mingo, A. [6 ]
Le Quang, D. [7 ]
Alsalihi, Z. [7 ]
Bariselli, F. [7 ]
Parodi, P. [7 ]
Jorge, P. [7 ]
Magin, T. E. [7 ]
机构
[1] SITAEL SPA, Via A Gherardesca 5, I-56121 Pisa, Italy
[2] Astos Solut GmbH, Meitnerstr 8, D-70563 Stuttgart, Germany
[3] DEDALOS Ltd, Vas Olgas 128, Thessaloniki 54645, Greece
[4] RHP Technol GmbH, A-2444 Seibersdorf, Austria
[5] Univ Surrey, Surrey Space Ctr, Guildford GU2 7XH, Surrey, England
[6] TransMIT Gesell Technol Transfer mbH, D-35394 Giessen, Germany
[7] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium
基金
欧盟地平线“2020”;
关键词
Air-breathing electric propulsion; Plasma thruster; Very low Earth orbit; Rarefied air flow;
D O I
10.1007/s12567-022-00442-3
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The possibility of efficiently exploiting Very Low Earth orbits (VLEO) poses significant technological challenges. One of the most demanding constraints is the need to counteract the drag generated by the interaction of the spacecraft with the surrounding atmosphere. Funded by the European Commission under the H2020 programme, the Air-breathing Electric THrustER (AETHER) project aims at developing the first propulsion system able to maintain a spacecraft at very-low altitudes for an extended time. The main objective of the project is to demonstrate, in a relevant environment, the critical functions of an air-breathing electric propulsion system, and its effectiveness in compensating atmospheric drag. This achievement will involve multiple research activities, among which: (i) the characterization of specific application cases through an extensive market analysis in order to define specific requirements and constraints at different design levels, (ii) fulfilment of pertinent testing conditions of flight conditions on-ground, relevant to the specific mission cases, (iii) the development of critical technologies, in particular those relevant to the collection, the ionization and the acceleration of rarefied atmospheric mixtures and (iv) the testing of the RAM-EP thruster to assess the system performance. In this paper, the main activities foreseen in the AETHER project are described, providing the detailed perspective towards an effective exploitation of the project outcomes for a possible future in-orbit demonstration.
引用
收藏
页码:717 / 740
页数:24
相关论文
共 50 条
  • [21] Simulation-guided engineering of an air-breathing electric propulsion concept
    Obrusnik, A.
    Mrozek, K.
    St'astny, M.
    Kubecka, M.
    Jurik, K.
    Dytrych, T.
    Daniel, V
    [J]. CEAS SPACE JOURNAL, 2022, 14 (04) : 741 - 747
  • [22] Air-breathing propulsion systems integration
    Benchergui, Dyna
    [J]. AEROSPACE AMERICA, 2012, 50 (11) : 46 - 46
  • [23] Integrated optimization of trajectories and layout parameters of spacecraft with air-breathing electric propulsion
    Golikov, A. A.
    Filatyev, A. S.
    [J]. ACTA ASTRONAUTICA, 2022, 193 : 644 - 652
  • [24] A review of air-breathing electric propulsion: from mission studies to technology verification
    Andreussi, Tommaso
    Ferrato, Eugenio
    Giannetti, Vittorio
    [J]. Journal of Electric Propulsion, 2022, 1 (01):
  • [25] Deflagration thruster for air-breathing electric propulsion in very low Earth orbit
    Subhankar, Varanasi Sai
    Prathivadi, Keshav P.
    Underwood, Thomas C.
    [J]. ACTA ASTRONAUTICA, 2024, 216 : 91 - 101
  • [26] Parametric Study of an Air-Breathing Electric Propulsion for Near-Space Vehicles
    Xu, Jinyi
    Wu, Zhiwen
    Chen, Pan
    Xia, Qimeng
    Xie, Kan
    Liu, Xiangyang
    [J]. JOURNAL OF PROPULSION AND POWER, 2018, 34 (05) : 1297 - 1304
  • [27] Integrated optimization of trajectories and layout parameters of spacecraft with air-breathing electric propulsion
    Golikov, A.A.
    Filatyev, A.S.
    [J]. Acta Astronautica, 2022, 193 : 644 - 652
  • [28] COMING TOGETHER ON AIR-BREATHING PROPULSION RESEARCH
    COVERT, EE
    KERREBROCK, JL
    [J]. ASTRONAUTICS & AERONAUTICS, 1975, 13 (09): : 58 - 59
  • [29] SCIROCCO air-breathing propulsion simulation capabilities
    Borrelli, S
    Bruno, C
    [J]. 4TH EUROPEAN SYMPOSIUM ON AEROTHERMODYNAMICS FOR SPACE VEHICLES, PROCEEDINGS, 2002, 487 : 645 - 651
  • [30] NEW PERSPECTIVE FOR UNIVERSITIES IN AIR-BREATHING PROPULSION
    HEISER, WH
    [J]. ASTRONAUTICS & AERONAUTICS, 1975, 13 (09): : 60 - 63