Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography - a review

被引:100
|
作者
Hassenstein, Andrea [1 ]
Meyer, Carsten H. [2 ]
机构
[1] Univ Eye Hosp, Hamburg, Germany
[2] Univ Bonn, Dept Ophthalmol, D-5300 Bonn, Germany
来源
关键词
fluorescein angiography; fundus autofluorescence; Heidelberg retina angiography; indocyanine green angiography; optical coherence tomography; SCANNING LASER OPHTHALMOSCOPE; INDOCYANINE GREEN ANGIOGRAPHY; INTEGRATION METHOD DIM; MACULAR DEGENERATION; FUNDUS AUTOFLUORESCENCE; GEOGRAPHIC ATROPHY; FLUORESCEIN ANGIOGRAPHY; OCT; TELANGIECTASIA; RETINOPATHY;
D O I
10.1111/j.1442-9071.2009.02017.x
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Fluorescein angiography (FA) was discovered by Nowotny and Alvis in the 1960s of the 20th century and has evolved to become the 'Gold standard' for macular diagnostics. Scanning laser imaging technology achieved enhancement of contrast and resolution. The combined Heidelberg retina angiograph (HRA2) adds novel innovative features to established fundus cameras. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure providing comfort and safety for the patient. Enhanced contrast, details and image sharpness image are generated using confocality. For the visualization of the choroid an indocyanine green angiography (ICGA) is the most suitable application. The main indications for ICGA are age-related macular degeneration, choroidal polypoidal vasculopathy and choroidal haemangiomas. Simultaneous digital FA and ICGA images with three-dimensional resolution offer improved diagnosis of retinal and choroidal pathologies. High-speed ICGA dynamic imaging can identify feeder vessels and retinal choroidal anastomoses, ensuring safer treatment of choroidal neovascularization. Autofluorescence imaging and fundus reflectance imaging with blue and infrared light offer new follow-up parameters for retinal diseases. Finally, the real-time optical coherence tomography provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combination of various macular diagnostic tools, such as infrared, blue reflectance, fundus autofluorescence, FA, ICGA and also spectral domain optical coherence tomography, lead to a better understanding and improved knowledge of macular diseases.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 50 条
  • [31] The Role of Spectral-Domain Optical Coherence Tomography in the Diagnosis of Retinal Angiomatous Proliferation
    Petropoulos, I. K.
    Matter, M. A.
    Katsimpris, J. M.
    Desmangles, P. M.
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2010, 227 (04) : 309 - 311
  • [32] Retinal layers in prolactinoma patients: a spectral-domain optical coherence tomography study
    Berna Evranos Ogmen
    Nagihan Ugurlu
    Sevgül Faki
    Sefika Burcak Polat
    Reyhan Ersoy
    Bekir Cakir
    International Ophthalmology, 2021, 41 : 1373 - 1379
  • [33] Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging
    You, Jang-Woo
    Chen, Teresa C.
    Mujat, Mircea
    Park, B. Hyle
    de Boer, Johannes F.
    OPTICS EXPRESS, 2006, 14 (15): : 6739 - 6748
  • [34] Retinal layers in prolactinoma patients: a spectral-domain optical coherence tomography study
    Ogmen, Berna Evranos
    Ugurlu, Nagihan
    Faki, Sevgul
    Polat, Sefika Burcak
    Ersoy, Reyhan
    Cakir, Bekir
    INTERNATIONAL OPHTHALMOLOGY, 2021, 41 (04) : 1373 - 1379
  • [35] Spectral-domain optical coherence tomography visualisation of retinal oxalosis in primary hyperoxaluria
    G Querques
    R Bouzitou-Mfoumou
    G Soubrane
    E H Souied
    Eye, 2010, 24 : 941 - 943
  • [36] Update on retinal vessel structure measurement with spectral-domain optical coherence tomography
    Zhu, Tie Pei
    Tong, Yu Hua
    Zhan, Hai Jing
    Ma, Jin
    MICROVASCULAR RESEARCH, 2014, 95 : 7 - 14
  • [37] Three-beam spectral-domain optical coherence tomography for retinal imaging
    Suehira, Nobuhito
    Ooto, Sotaro
    Hangai, Masanori
    Matsumoto, Kazuhiro
    Tomatsu, Nobuhiro
    Yuasa, Takashi
    Yamada, Kazuro
    Yoshimura, Nagahisa
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (10)
  • [38] Retinal pathology in Susac syndrome detected by spectral-domain optical coherence tomography
    Ringelstein, Marius
    Albrecht, Philipp
    Kleffner, Ilka
    Buehn, Bjoern
    Harmel, Jens
    Mueller, Ann-Kristin
    Finis, David
    Guthoff, Rainer
    Bergholz, Richard
    Duning, Thomas
    Kraemer, Markus
    Paul, Friedemann
    Brandt, Alexander
    Oberwahrenbrock, Timm
    Mikolajczak, Janine
    Wildemann, Brigitte
    Jarius, Sven
    Hartung, Hans-Peter
    Aktas, Orhan
    Doerr, Jan
    NEUROLOGY, 2015, 85 (07) : 610 - 618
  • [39] Spectral-domain optical coherence tomography visualisation of retinal oxalosis in primary hyperoxaluria
    Querques, G.
    Bouzitou-Mfoumou, R.
    Soubrane, G.
    Souied, E. H.
    EYE, 2010, 24 (05) : 941 - 943
  • [40] Comparison of the Performance of Two Different Spectral-Domain Optical Coherence Tomography Angiography Devices in Clinical Practice
    De Vitis, Luigi Antonio
    Benatti, Lucia
    Tomasso, Livia
    Baldin, Giovanni
    Carnevali, Adriano
    Querques, Lea
    Querques, Giuseppe
    Bandello, Francesco
    OPHTHALMIC RESEARCH, 2016, 56 (03) : 155 - 162