Uniform supertrees with extremal spectral radii

被引:5
|
作者
Wang, Wen-Huan [1 ]
Yuan, Ling [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; spectral radius; supertree; matching polynomial; HYPERGRAPHS; EIGENVALUES; BOUNDS; 1ST;
D O I
10.1007/s11464-020-0873-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A supertree is a connected and acyclic hypergraph. We investigate the supertrees with the extremal spectral radii among several kinds of r-uniform supertrees. First, by using the matching polynomials of supertrees, a new and useful grafting operation is proposed for comparing the spectral radii of supertrees, and its applications are shown to obtain the supertrees with the extremal spectral radii among some kinds of r-uniform supertrees. Second, the supertree with the third smallest spectral radius among the r-uniform supertrees is deduced. Third, among the r-uniform supertrees with a given maximum degree, the supertree with the smallest spectral radius is derived. At last, among the r-uniform starlike supertrees, the supertrees with the smallest and the largest spectral radii are characterized.
引用
收藏
页码:1211 / 1229
页数:19
相关论文
共 50 条
  • [41] Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs
    Lin, Hongying
    Mo, Biao
    Zhou, Bo
    Weng, Weiming
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 217 - 227
  • [42] The maximum spectral radii of weighted uniform loose cycles and unicyclic hypergraphs
    Du, Juanxia
    Xiao, Peng
    Xi, Weige
    FILOMAT, 2024, 38 (21) : 7635 - 7646
  • [43] Distance spectral radii of k-uniform hypertrees with fixed diameter
    Liu, Xiangxiang
    Wang, Ligong
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 899 - 915
  • [44] The effect on the (signless Laplacian) spectral radii of uniform hypergraphs by subdividing an edge
    Xiao, Peng
    Wang, Ligong
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 444 - 455
  • [45] EXTREMAL NORMS RELATED TO OPERATOR RADII
    Ando, Tsuyoshi
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (03) : 369 - 379
  • [46] Theα-normal labelling method for computing thep-spectral radii of uniform hypergraphs
    Liu, Lele
    Lu, Linyuan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (09): : 1648 - 1672
  • [47] Sharp Bounds on the Spectral Radii of Uniform Hypergraphs concerning Diameter or Clique Number
    Niu, Qiannan
    Ren, Haizhen
    Zhang, Lei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [48] Upper bounds for H- and Z-spectral radii of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Mo, Biao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 205 - 221
  • [49] The effect on the adjacency and signless Laplacian spectral radii of uniform hypergraphs by grafting edges
    Xiao, Peng
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 (610) : 591 - 607
  • [50] The extremal spectral radii of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-uniform supertrees
    Honghai Li
    Jia-Yu Shao
    Liqun Qi
    Journal of Combinatorial Optimization, 2016, 32 (3) : 741 - 764