Spectral methods for partial differential equations in irregular domains:: The spectral smoothed boundary method

被引:104
|
作者
Bueno-Orovio, Alfonso
Perez-Garcia, Victor M.
Fenton, Flavio H.
机构
[1] Univ Castilla La Mancha, ETSI Ind, Dept Matemat, E-13071 Ciudad Real, Spain
[2] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
[3] Beth Israel Deaconess Med Ctr, New York, NY 10003 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 28卷 / 03期
关键词
spectral methods; irregular domains; phase field methods; reaction-diffusion equations;
D O I
10.1137/040607575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method to approximate the solution of partial differential equations in irregular domains with no-flux boundary conditions. The idea is to embed the domain into a box and use a smoothing term to encode the boundary conditions into a modified equation that can be approached by standard spectral methods. The main features of this method are its capability to deal with domains of arbitrary shape and its easy implementation via fast Fourier transform routines. We discuss several examples of practical interest and test the results against standard numerical methods.
引用
收藏
页码:886 / 900
页数:15
相关论文
共 50 条
  • [41] Hermite spectral and pseudospectral methods for nonlinear partial differential equations in multiple dimensions
    Xu Cheng-Long
    Guo Ben-Yu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2003, 22 (02): : 167 - 193
  • [42] A spectral method for parabolic differential equations
    Kendall Atkinson
    Olaf Hansen
    David Chien
    Numerical Algorithms, 2013, 63 : 213 - 237
  • [43] On the Multidomain Bivariate Spectral Local Linearisation Method for Solving Systems of Nonsimilar Boundary Layer Partial Differential Equations
    Magagula, Vusi Mpendulo
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2019, 2019
  • [44] A spectral method for parabolic differential equations
    Atkinson, Kendall
    Hansen, Olaf
    Chien, David
    NUMERICAL ALGORITHMS, 2013, 63 (02) : 213 - 237
  • [45] Domain Decomposition Spectral Method for Mixed Inhomogeneous Boundary Value Problems of High Order Differential Equations on Unbounded Domains
    Chao Zhang
    Ben-yu Guo
    Journal of Scientific Computing, 2012, 53 : 451 - 480
  • [46] Domain Decomposition Spectral Method for Mixed Inhomogeneous Boundary Value Problems of High Order Differential Equations on Unbounded Domains
    Zhang, Chao
    Guo, Ben-yu
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (02) : 451 - 480
  • [47] Spectral Methods for Substantial Fractional Differential Equations
    Can Huang
    Zhimin Zhang
    Qingshuo Song
    Journal of Scientific Computing, 2018, 74 : 1554 - 1574
  • [48] Spectral Methods for Substantial Fractional Differential Equations
    Huang, Can
    Zhang, Zhimin
    Song, Qingshuo
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1554 - 1574
  • [49] Spectral Methods for Solution of Differential and Functional Equations
    Varin, V. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (05) : 888 - 904
  • [50] Spectral Methods for Multiscale Stochastic Differential Equations
    Abdulle, A.
    Pavliotis, G. A.
    Vaes, U.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 720 - 761