Text Classification Based on a Novel Bayesian Hierarchical Model

被引:0
|
作者
Zhou, Shibin [1 ]
Li, Kan [1 ]
Liu, Yushu [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
关键词
D O I
10.1109/FSKD.2008.666
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the text literature, many Bayesian generative models were proposed to represent documents and words in order to process text effectively and accurately. As the most popular one of these models, Latent Dirichlet Allocation Model(LDA) did great job in dimensionality reduction for document classification. In this paper, inspiring by Latent Dirichlet Allocation Model, we propose LDCM or Latent Dirichlet Category Model for text classification rather than dimensionality reduction. LDCM estimate parameters of models by variational inference and use variational parameters to estimate maximum a posteriori of terms. As demonstrated by our experimental results, we report satisfactory categorization performances about our method on various real-world text documents.
引用
收藏
页码:218 / 221
页数:4
相关论文
共 50 条
  • [41] A novel Bayesian hierarchical model for road safety hotspot prediction
    Fawcett, Lee
    Thorpe, Neil
    Matthews, Joseph
    Kremer, Karsten
    ACCIDENT ANALYSIS AND PREVENTION, 2017, 99 : 262 - 271
  • [42] Naive approach for hierarchical text classification
    Wang, Mingwen
    Lu, Xu
    Zhang, Huawei
    Luo, Yuansheng
    Journal of Computational Information Systems, 2007, 3 (04): : 1591 - 1598
  • [43] Hierarchical Label Generation for Text Classification
    Kwon, Jingun
    Kamigaito, Hidetaka
    Song, Young-In
    Okumura, Manabu
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 625 - 632
  • [44] Hierarchical text classification methods and their specification
    Sun, AX
    Lim, EP
    Ng, WK
    COOPERATIVE INTERNET COMPUTING, 2003, 729 : 236 - 256
  • [45] Context Recognition for Hierarchical Text Classification
    Liu, Rey-Long
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2009, 60 (04): : 803 - 813
  • [46] Hierarchical Interpretation of Neural Text Classification
    Yan, Hanqi
    Gui, Lin
    He, Yulan
    COMPUTATIONAL LINGUISTICS, 2022, 48 (04) : 987 - 1020
  • [47] Hierarchical Text Classification Incremental Learning
    Song, Shengli
    Qiao, Xiaofei
    Chen, Ping
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 247 - 258
  • [48] Classification using a hierarchical Bayesian approach
    Mathis, C
    Breuel, T
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITON, VOL IV, PROCEEDINGS, 2002, : 103 - 106
  • [49] Hierarchical Bayesian classification of chirp signals
    Doncarli, C
    Davy, M
    Tourneret, JY
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1565 - 1568
  • [50] A fast algorithm for hierarchical text classification
    Chuang, WT
    Tiyyagura, A
    Yang, J
    Giuffrida, G
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2000, 1874 : 409 - 418