A monotone version of the Sokolov property and monotone retractability in function spaces

被引:15
|
作者
Rojas-Hernandez, R. [1 ]
Tkachuk, V. V. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
Lindelof Sigma-space; Retraction; omega-Monotone operator; Monotonically retractable space; Simple space; Sokolov space; Monotonically Sokolov space; Gul'ko space; Normal space; Collectionwise normal space; Lindelof space; Function space; Extent;
D O I
10.1016/j.jmaa.2013.10.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the monotone Sokolov property and show that it is dual to monotone retractability in the sense that X is monotonically retractable if and only if C-p(X) is monotonically Sokolov. Besides, a space X is monotonically Sokolov if and only if C-p(X) is monotonically retractable. Monotone retractability and monotone Sokolov property are shown to be preserved by R-quotient images and F-sigma-subspaces. Furthermore, every monotonically retractable space is Sokolov so it is collectionwise normal and has countable extent. We also establish that if X and C-p(X) are Lindelof Sigma-spaces then they are both monotonically retractable and have the monotone Sokolov property. An example is given of a space X such that C-p(X) has the Lindelof Sigma-property but neither X nor C-p(X) is monotonically retractable. We also establish that every Lindelof Sigma-space with a unique non-isolated point is monotonically retractable. On the other hand, each Lindelof space with a unique non-isolated point is monotonically Sokolov. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [1] ON MONOTONE RETRACTABILITY INTO SIMPLE ARCS
    WHYBURN, GT
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (02) : 109 - 112
  • [2] Monotone retractability and retractional skeletons
    Cuth, Marek
    Kalenda, Ondrej F. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 18 - 31
  • [3] D-property, monotone monolithicity and function spaces
    Rojas-Hernandez, R.
    Tamariz-Mascarua, A.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (16) : 3379 - 3391
  • [4] On monotone normality of function spaces
    Yashchenko, I.V.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (03): : 95 - 96
  • [5] The monotone Lindelof property and separability in ordered spaces
    Bennett, H
    Lutzer, D
    Matveev, M
    TOPOLOGY AND ITS APPLICATIONS, 2005, 151 (1-3) : 180 - 186
  • [6] On monotone mappings in modular function spaces
    Bin Dehaish, Buthinah A.
    Khamsi, Mohamed A.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (08): : 5219 - 5228
  • [7] ON MONOTONE NORMALITY OF FUNCTION-SPACES
    YASCENKO, IV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (03): : 95 - 96
  • [8] Directional monotone comparative statics in function spaces
    Uttiya Paul
    Tarun Sabarwal
    Economic Theory Bulletin, 2023, 11 : 153 - 169
  • [9] On monotone contraction mappings in modular function spaces
    Alfuraidan, Monther R.
    Bachar, Mostafa
    Khamsi, Mohamed A.
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [10] Directional monotone comparative statics in function spaces
    Paul, Uttiya
    Sabarwal, Tarun
    ECONOMIC THEORY BULLETIN, 2023, 11 (01) : 153 - 169