Activation Pathways of Neurotensin Receptor 1 Elucidated Using Statistical Machine Learning

被引:5
|
作者
Yadav, Prakarsh [2 ]
Farimani, Amir Barati [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Biomed Engn Chem Engn & Machine Learning, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
来源
ACS CHEMICAL NEUROSCIENCE | 2022年 / 13卷 / 08期
基金
美国安德鲁·梅隆基金会;
关键词
neurotensin receptor; machine learning; conformational changes; activation mechanism; STRUCTURAL INSIGHTS; MOLECULAR-DYNAMICS;
D O I
10.1021/acschemneuro.2c00154
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
: Neurotensin receptor 1 (NTSR1) is a G-protein coupled receptor (GPCR) that mediates many biological processes through its interaction with the neurotensin (NTS) peptide. The NTSR1 protein is a clinically significant target as it is involved in the proliferation of cancer cells. Understanding the activation mechanism of NTSR1 is an important prerequisite for exploring the therapeutic potential of targeting NTSR1 and the development of drug molecules specific to NTSR1. Previous studies have been aimed at elucidating the structure of NTSR1 in the active and inactive conformations; however, the intermediate molecular pathway for NTSR1 activation dynamics is largely unknown. In this study, we performed extensive molecular dynamics (MD) simulations of the NTSR1 protein and analyzed its kinetic conformational changes to determine the microswitches that drive NTSR1 activation. To biophysically interpret the high-dimensional simulation trajectories, we used Markov state models and machine learning to elucidate the important and detailed conformational changes in NTSR1. Through the analysis of identified microswitches, we propose a mechanistic pathway for NTSR1 activation.
引用
收藏
页码:1333 / 1341
页数:9
相关论文
共 50 条
  • [21] Brain tumor detection using statistical and machine learning method
    Amin, Javaria
    Sharif, Muhammad
    Raza, Mudassar
    Saba, Tanzila
    Anjum, Muhammad Almas
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 177 : 69 - 79
  • [22] Quality Assessment of Data Using Statistical and Machine Learning Methods
    Singh, Prerna
    Suri, Bharti
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 89 - 97
  • [23] Demand forecasting in restaurants using machine learning and statistical analysis
    Tanizaki, Takashi
    Hoshino, Tomohiro
    Shimmura, Takeshi
    Takenaka, Takeshi
    12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2019, 79 : 679 - 683
  • [24] Testing of Analog Circuits using Statistical and Machine Learning Techniques
    Srimani, Supriyo
    Rahaman, Hafizur
    2022 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2022, : 619 - 626
  • [25] Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy
    Baoqiang Zhan
    Shu Zhang
    Helen S. Du
    Xiaoguang Yang
    Computational Economics, 2022, 60 : 861 - 882
  • [26] Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy
    Zhan, Baoqiang
    Zhang, Shu
    Du, Helen S.
    Yang, Xiaoguang
    COMPUTATIONAL ECONOMICS, 2022, 60 (03) : 861 - 882
  • [27] Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss
    Perez-Bonilla, Patricia
    Santiago-Colon, Krystal
    Matasovsky, Jillian
    Ramirez-Virella, Jariel
    Khan, Rabail
    Garver, Hannah
    Fink, Gregory
    Dorrance, Anne M.
    Leinninger, Gina M.
    NEUROPHARMACOLOGY, 2021, 195
  • [28] Neurotensin (NT) Receptor 1 (Ntr1)-MicroRNA Networks in Human Colon Epithelial Cells. Characterization of Novel Pathways Connecting Neurotensin and Tumor Growth
    Bakinzi, Kyriaki
    Iliopoulos, Dimitrios
    Karagiannidis, Iordanis
    Bugni, James M.
    Hatziapostolou, Maria
    Pothoulakis, Charalabos
    GASTROENTEROLOGY, 2011, 140 (05) : S102 - S103
  • [29] Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer's Disease Model
    Xiao, Zhaoyang
    Cilz, Nicholas I.
    Kurada, Lalitha
    Hu, Binqi
    Yang, Chuanxiu
    Wada, Etsuko
    Combs, Colin K.
    Porter, James E.
    Lesage, Florian
    Lei, Saobo
    JOURNAL OF NEUROSCIENCE, 2014, 34 (20): : 7027 - 7042
  • [30] Wheat Yield Prediction for Turkey Using Statistical Machine Learning and Deep Learning Methods
    Ozden, Cevher
    Karadogan, Nurguel
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2024, 61 (02): : 429 - 435