Power Control in Internet of Drones by Deep Reinforcement Learning

被引:4
|
作者
Yao, Jingjing [1 ]
Ansari, Nirwan [1 ]
机构
[1] New Jersey Inst Technol, Helen & John C Hartmann Dept Elect & Comp Engn, Adv Networking Lab, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Power control; internet of drones (IoD); energy harvesting; deep reinforcement learning; actor-critic; quality of service (QoS); ENERGY; ALLOCATION;
D O I
10.1109/icc40277.2020.9148749
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Internet of Drones (IoD) employs drones as the internet of things (IoT) devices to provision applications such as traffic surveillance and object tracking. Data collection service is a typical application where multiple drones are deployed to collect information from the ground and send them to the IoT gateway for further processing. The performance of IoD networks is constrained by drones' battery capacities, and hence we utilize both energy harvesting technologies and power control to address this limitation. Specifically, we optimize drones' wireless transmission power at each time epoch in energy harvesting aided time-varying IoD networks for the data collection service with the objective to minimize the average system energy cost. We then formulate a Markov Decision Process (MDP) model to characterize the power control process in dynamic IoD networks, which is then solved by our proposed model-free deep actor-critic reinforcement learning algorithm. The performance of our algorithm is demonstrated via extensive simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Deep Reinforcement Learning Based Framework for Power System Load Frequency Control
    Zhang, Guanyu
    Teng, Mengjie
    Chen, Chen
    Bie, Zhaohong
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1801 - 1805
  • [42] Deep Reinforcement Learning Aided Trajectory and Power Control for Secure UAV Communication
    Wang, Zhijian
    Su, Gongchao
    Chen, Bin
    Dai, Mingjun
    Lin, Xiaohui
    PROCEEDINGS OF THE 2024 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORKS, ICWCSN 2024, 2024, : 74 - 79
  • [43] Volt-VAR Control in Power Distribution Systems with Deep Reinforcement Learning
    Wang, Wei
    Yu, Nanpeng
    Shi, Jie
    Gao, Yuanqi
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [44] Explainable AI in Deep Reinforcement Learning Models for Power System Emergency Control
    Zhang, Ke
    Zhang, Jun
    Xu, Pei-Dong
    Gao, Tianlu
    Gao, David Wenzhong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (02): : 419 - 427
  • [45] Joint Beamforming and Power Control for MIMO-NOMA with Deep Reinforcement Learning
    Lu, Tongwei
    Zhang, Haijun
    Long, Keping
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [46] Scheduling and Power Control for Wireless Multicast Systems via Deep Reinforcement Learning
    Raghu, Ramkumar
    Panju, Mahadesh
    Aggarwal, Vaneet
    Sharma, Vinod
    ENTROPY, 2021, 23 (12)
  • [47] Supervised assisted deep reinforcement learning for emergency voltage control of power systems
    Li, Xiaoshuang
    Wang, Xiao
    Zheng, Xinhu
    Dai, Yuxin
    Yu, Zhihong
    Zhang, Jun Jason
    Bu, Guangquan
    Wang, Fei-Yue
    NEUROCOMPUTING, 2022, 475 : 69 - 79
  • [48] Deep Reinforcement Learning Based Approach for Active Power Security Correction Control of Power System
    Wang, Yidi
    Li, Lixin
    Yu, Yijun
    Ma, Xiaochen
    Cai, Zhi
    Liu, Meng
    Tang, Junci
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 701 - 705
  • [49] A Deep Learning-Based Blockchain Mechanism for Secure Internet of Drones Environment
    Singh, Maninderpal
    Aujla, Gagangeet Singh
    Bali, Rasmeet Singh
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4404 - 4413
  • [50] Automatic Voltage Control of Differential Power Grids Based on Transfer Learning and Deep Reinforcement Learning
    Wang, Tianjing
    Tang, Yong
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (03): : 937 - 948