Comparing cubes of typed and type assignment systems

被引:12
|
作者
vanBakel, S [1 ]
Liquori, L [1 ]
dellaRocca, SR [1 ]
Urzyczyn, P [1 ]
机构
[1] UNIV WARSAW,INST INFORMAT,PL-02097 WARSAW,POLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0168-0072(96)00036-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the cube of type assignment systems, as introduced in Giannini et al. (Fund. Inform. 19 (1993) 87-126), and confront it with Barendregt's typed lambda-cube (Barendregt, in: Handbook of Logic in Computer Science, Vol. 2, Clarenden Press, Oxford, 1992). The first is obtained from the latter through applying a natural type erasing function E to derivation rules, that erases type information from terms. In particular, we address the question whether a judgement, derivable in a type assignment system, is always an erasure of a derivable judgement in a corresponding typed system; we show that this property holds only for systems without polymorphism. The type assignment systems we consider satisfy the properties 'subject reduction' and 'strong normalization'. Moreover, we define a new type assignment cube that is isomorphic to the typed one.
引用
收藏
页码:267 / 303
页数:37
相关论文
共 50 条
  • [41] Embedding minimal dynamical systems into Hilbert cubes
    Yonatan Gutman
    Masaki Tsukamoto
    Inventiones mathematicae, 2020, 221 : 113 - 166
  • [42] Exploring Type Inference Techniques of Dynamically Typed Languages
    Saifullah, C. M. Khaled
    Asaduzzaman, Muhammad
    Roy, Chanchal K.
    PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), 2020, : 70 - 80
  • [43] SYSTEMS OF MAGIC LATIN K-CUBES
    ARKIN, J
    HOGGATT, VE
    STRAUS, EG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A38 - A38
  • [44] Comparing outcomes - Comparing systems
    Demakis, JG
    MEDICAL CARE, 1999, 37 (06) : 527 - 528
  • [45] Completeness of intersection and union type assignment systems for call-by-value λ-models
    Ishihara, H
    Kurata, T
    THEORETICAL COMPUTER SCIENCE, 2002, 272 (1-2) : 197 - 221
  • [46] Cluster analysis in systems of magnetic spheres and cubes
    Pyanzina, E. S.
    Gudkova, A. V.
    Donaldson, J. G.
    Kantorovich, S. S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 431 : 201 - 204
  • [47] A TYPED LAMBDA-CALCULUS WITH CATEGORICAL TYPE CONSTRUCTORS
    HAGINO, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 283 : 140 - 157
  • [48] Embedding minimal dynamical systems into Hilbert cubes
    Gutman, Yonatan
    Tsukamoto, Masaki
    INVENTIONES MATHEMATICAE, 2020, 221 (01) : 113 - 166
  • [49] Routing and wavelength assignment for exchanged crossed cubes on ring-topology optical networks
    Yu-Liang Liu
    Soft Computing, 2018, 22 : 6693 - 6703
  • [50] SYSTEMS OF MAGIC LATIN K-CUBES
    ARKIN, J
    HOGGATT, VE
    STRAUS, EG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (06): : 1153 - 1161