Nonparametric predictive inference and interval probability

被引:98
|
作者
Augustin, T
Coolen, FPA
机构
[1] Univ Durham, Dept Math Sci, Sci Labs, Durham DH1 3LE, England
[2] Univ Munich, Dept Stat, D-80799 Munich, Germany
关键词
A(n); capacities; conditioning; consistency; imprecise probabilities; interval probability; nonparametrics; low structure inference; predictive inference; updating;
D O I
10.1016/j.jspi.2003.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The assumption A((n)), proposed by Hill (J. Amer. Statist. Assoc. 63 (1968) 677), provides a natural basis for low structure non-parametric predictive inference, and has been justified in the Bayesian framework. This paper embeds A((n))-based inference into the theory of interval probability, by showing that the corresponding bounds are totally monotone F-probability and coherent. Similar attractive internal consistency results are proven to hold for conditioning and updating. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 272
页数:22
相关论文
共 50 条