On the mathematical theory of the Aharonov-Bohm effect

被引:20
|
作者
Roux, P [1 ]
Yafaev, D [1 ]
机构
[1] Univ Rennes, Dept Math, F-35042 Rennes, France
来源
关键词
D O I
10.1088/0305-4470/35/34/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Schrodinger operator H = (idel+A)(2) in the space L-2(R-2) with a magnetic potential A(x) = a((x) over cap) (-x(2), x(1)) \x\(-2), where a is an arbitrary function on the unit circle. Our goal is to study spectral properties of the corresponding scattering matrix S(lambda), lambda > 0. We obtain its stationary representation and show that its singular part (up to compact terms) is a pseudodifferential operator of zero order whose symbol is an explicit function of a. We deduce from this result that the essential spectrum of S(lambda) does not depend on lambda and consists of two complex conjugated and perhaps overlapping closed intervals of the unit circle. Finally, we calculate the diagonal singularity of the scattering amplitude (kernel of S(lambda) considered as an integral operator). In particular, we show that for all these properties only the behaviour of a potential at infinity is essential. The preceding papers on this subject treated the case a((x) over cap) = const and used the separation of variables in the Schrodinger equation in the polar coordinates. This technique does not, of course, work for arbitrary a. From an analytical point of view, our paper relies on some modern tools of scattering theory and well-known properties of pseudodifferential operators.
引用
收藏
页码:7481 / 7492
页数:12
相关论文
共 50 条
  • [41] Electrodynamic Aharonov-Bohm effect
    Saldanha, Pablo L.
    [J]. PHYSICAL REVIEW A, 2023, 108 (06)
  • [42] On the scattering Aharonov-Bohm effect
    Ivetic, Boris
    [J]. PHYSICA SCRIPTA, 2019, 94 (05)
  • [43] Gravitational Aharonov-Bohm effect
    Heller, Michael
    Odrzygozdz, Zdzislaw
    Pysiak, Leszek
    Sasin, Wieslaw
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (10) : 2566 - 2575
  • [44] Aharonov-Bohm effect revisited
    Eskin, Gregory
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2015, 27 (02)
  • [45] NONEXISTENCE OF THE AHARONOV-BOHM EFFECT
    BOCCHIERI, P
    LOINGER, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 47 (04): : 475 - 482
  • [46] GRAVITATIONAL AHARONOV-BOHM EFFECT
    LAWRENCE, JK
    LEITER, D
    SZAMOSI, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, B 17 (01): : 113 - 121
  • [47] Plasmonic Aharonov-Bohm Effect
    Kleiner, Vladimir
    Nechayev, Sergey
    Gorodetski, Yuri
    Hasman, Erez
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [48] Geometry of the Aharonov-Bohm effect
    Huerfano, R. S.
    Lopez, M. A.
    Socolovsky, M.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (11) : 2961 - 2966
  • [49] UNRIDDLING THE AHARONOV-BOHM EFFECT
    YAMADA, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1987, 98 (02): : 205 - 210
  • [50] THE AHARONOV-BOHM EFFECT REVISITED
    FEARN, H
    [J]. QUANTUM AND SEMICLASSICAL OPTICS, 1995, 7 (03): : 205 - 209