Backward stochastic differential equations associated with the vorticity equations

被引:5
|
作者
Cruzeiro, A. B. [1 ,2 ]
Qian, Z. M. [3 ]
机构
[1] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, P-1049001 Lisbon, Portugal
[3] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
Navier-Stokes; Vorticity equations; Backward SDE; GENERAL BOUNDARY CONDITIONS; QUADRATIC GROWTH;
D O I
10.1016/j.jfa.2014.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive a non-linear version of the Feynman-Kac formula for the solutions of the vorticity equation in dimension 2 with space periodic boundary conditions. We prove the existence (global in time) and uniqueness for a stochastic terminal value problem associated with the vorticity equation in dimension 2. A particular class of terminal values provide, via these probabilistic methods, solutions for the vorticity equation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:660 / 677
页数:18
相关论文
共 50 条
  • [41] REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH PERTURBATIONS
    Djordjevic, Jasmina
    Jankovic, Svetlana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (04) : 1833 - 1848
  • [42] Reflected backward stochastic differential equations in an orthant
    Ramasubramanian, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (02): : 347 - 360
  • [43] Lp solutions of backward stochastic differential equations
    Briand, P
    Delyon, B
    Hu, Y
    Pardoux, E
    Stoica, L
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) : 109 - 129
  • [44] Representation theorems for backward stochastic differential equations
    Ma, J
    Zhang, JF
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (04): : 1390 - 1418
  • [45] Backward stochastic differential equations in a Lie group
    Estrade, A
    Pontier, M
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 241 - 259
  • [46] REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH RESISTANCE
    Qian, Zhongmin
    Xu, Mingyu
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (02): : 888 - 911
  • [47] Averaging Principle for Backward Stochastic Differential Equations
    Jing, Yuanyuan
    Li, Zhi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [48] On a class of backward doubly stochastic differential equations
    Jankovic, Svetlana
    Djordjevic, Jasmina
    Jovanovic, Miljana
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8754 - 8764
  • [49] Backward stochastic differential equations with a convex generator
    Chikvinidze, Besik
    GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (01) : 63 - 92
  • [50] Numerical method for backward stochastic differential equations
    Ma, J
    Protter, P
    San Martín, J
    Torres, S
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (01): : 302 - 316