Multifractal analysis of the divergence points of Birkhoff averages for β-transformations

被引:0
|
作者
Chen, Yuanhong [1 ]
Zhang, Zhenliang [1 ,2 ]
Zhao, Xiaojun [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Henan, Peoples R China
[3] Peking Univ, Sch Econ, Beijing 100871, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 182卷 / 04期
基金
中国国家自然科学基金;
关键词
Divergence point; beta-Expansion; Hausdorff dimension; SETS; RECURRENCE;
D O I
10.1007/s00605-016-0895-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of beta-expansions. More precisely, let T-beta be the beta-transformation on [0, 1) for a general beta > 1 and psi : [0, 1] bar right arrow R be a continuous function. Denote by A(psi, x) all the accumulation points of {1/n Sigma(n-1)(j=0) psi (T (j) x) : n >= 1}. The Hausdorff dimensions of the sets {x : A(psi, x) superset of [a, b]}, {x : A(psi, x) = [a, b]}, {x : A(psi, x) subset of [a, b]} i.e., the points for which the Birkhoff averages of psi do not exist but behave in a certain prescribed way, are determined completely for any continuous function psi.
引用
收藏
页码:823 / 839
页数:17
相关论文
共 50 条
  • [31] MULTIFRACTAL ANALYSIS OF THE BIRKHOFF SUMS OF SAINT-PETERSBURG POTENTIAL
    Kim, Dong Han
    Liao, Lingmin
    Rams, Michal
    Wang, Bao-Wei
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [32] Multifractal Spectrum for Barycentric Averages
    Alejandro Mesón
    Fernando Vericat
    [J]. Journal of Dynamical and Control Systems, 2016, 22 : 623 - 635
  • [33] Multifractal Spectrum for Barycentric Averages
    Meson, Alejandro
    Vericat, Fernando
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (04) : 623 - 635
  • [34] Weighted Birkhoff Averages and the Parameterization Method
    Blessing, David
    James, J.D. Mireles
    [J]. SIAM Journal on Applied Dynamical Systems, 2024, 23 (04): : 1766 - 1804
  • [35] Multifractal analysis of ergodic averages: A generalization of eggleston's theorem
    Tempelman A.A.
    [J]. Journal of Dynamical and Control Systems, 2001, 7 (4) : 535 - 551
  • [36] Pointwise convergence of Birkhoff averages for global observables
    Lenci, Marco
    Munday, Sara
    [J]. CHAOS, 2018, 28 (08)
  • [37] On the divergence of Birkhoff Normal Forms
    Raphaël Krikorian
    [J]. Publications mathématiques de l'IHÉS, 2022, 135 : 1 - 181
  • [38] ON THE DIVERGENCE OF BIRKHOFF NORMAL FORMS
    Krikorian, Raphael
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2022, 135 (01): : 1 - 181
  • [39] Multifractal analysis of time averages for continuous vector functions on configuration space
    Gurevich, B. M.
    Tempelman, A. A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2007, 51 (01) : 78 - 91
  • [40] Multifractal analysis of the divergence of Fourier series: The extreme cases
    Frédéric Bayart
    Yanick Heurteaux
    [J]. Journal d'Analyse Mathématique, 2014, 124 : 387 - 408