The covering number and the uniformity of the ideal If

被引:4
|
作者
Osuga, Noboru [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Sakai, Osaka 5998531, Japan
关键词
countable support iteration; infinitely equal forcing; Sacks forcing; covering number;
D O I
10.1002/malq.200610001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f, g is an element of (omega)omega. We will denote by g >> f that for every k < omega, f(n(k)) <= g(n) except for finitely many n. The ideal I-f on (omega)2 is the collection of sets X such that, for some g >> f and tau is an element of Pi(n <omega) (g(2))2, every x is an element of X satisfies tau(n) subset of x for infinitely many n. In the present paper, we will prove the consistency of cov(I-f) < c and non(I-f) < c. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 50 条
  • [41] The number of covers in intersecting families with covering number three
    Furuya, Michitaka
    Takatou, Masanori
    ARS COMBINATORIA, 2019, 142 : 293 - 327
  • [43] The structure and number of Erdos covering systems
    Balister, Paul
    Bollobas, Bela
    Morris, Robert
    Sahasrabudhe, Julian
    Tiba, Marius
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 75 - 109
  • [44] The relative covering Nielsen number for coincidences
    Moh'd, Fida
    TOPOLOGY AND ITS APPLICATIONS, 2019, 268
  • [45] Inverse vertex covering number of a graph
    Kulli, V. R.
    Iyer, R. R.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (06): : 389 - 393
  • [46] IDEAL FLOOD FIELD IMAGES FOR SPECT UNIFORMITY CORRECTION
    OPPENHEIM, BE
    APPLEDORN, CR
    JOURNAL OF NUCLEAR MEDICINE, 1984, 25 (05) : P14 - P15
  • [47] REDUCING NUMBER OF CONSTRAINTS IN COVERING PROBLEMS
    PELED, UN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A254 - A254
  • [48] The forcing edge covering number of a graph
    John, J.
    Vijayan, A.
    Sujitha, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (03): : 249 - 259
  • [49] Covering a Triangular Number with Pentagonal Numbers
    Caglayan, Gunhan
    MATHEMATICAL INTELLIGENCER, 2020, 42 (01): : 55 - 55
  • [50] The edge covering number of ordered sets
    Lee, JG
    ARS COMBINATORIA, 1999, 53 : 27 - 32