Singularity and symmetry analyses of mathematical models of epidemics

被引:0
|
作者
Nucci, M. C. [1 ]
Leach, P. G. L. [1 ,2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
关键词
epidemiology; symmetry analysis; singularity analysis; mathematical modelling; ORDINARY DIFFERENTIAL-EQUATIONS; LINEAR EVOLUTION-EQUATIONS; LIE POINT SYMMETRIES; NONLOCAL SYMMETRIES; PAINLEVE PROPERTY; 1ST INTEGRALS; P-TYPE; REDUCTION; CONNECTION; ORDER;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a summary of the methods of Lie symmetry and Painleve singularity analyses and apply them to a number of well-known epidemiological models to demonstrate the utility of these analyses in the analysis of dynamical systems which arise during investigations of the evolution of diseases.
引用
收藏
页码:136 / 146
页数:11
相关论文
共 50 条
  • [21] MATHEMATICAL MODEL FOR THE SPREAD OF EPIDEMICS
    Rahman, Md. Zaidur
    Azad, Md. Abul Kalam
    Hasan, Md. Nazmul
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2012, 6 (02): : 843 - 858
  • [22] Contribution to the mathematical theory of epidemics
    Kermack, WO
    McKendrick, AG
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) : 700 - 721
  • [23] SINGULARITY METHODS IN MATHEMATICAL PHYSICS
    ALAWNEH, AD
    KANWAL, RP
    SIAM REVIEW, 1977, 19 (03) : 437 - 471
  • [24] PREDICTING EPIDEMICS WITH MATHEMATICAL MODELS - WHAT COVID-19 TAUGHT US ON RSV
    Agyeman, P. K. A.
    Schobi, N.
    Steinberg, R.
    Barbani, M. T.
    Duppenthaler, A.
    Hayoz, S.
    Kopp, M.
    Aebi, C.
    SWISS MEDICAL WEEKLY, 2023, 153 : 36S - 36S
  • [25] Analyses of mathematical models for city population dynamics under heterogeneity
    Collins, O. C.
    Simelane, T. S.
    Duffy, K. J.
    AFRICAN JOURNAL OF SCIENCE TECHNOLOGY INNOVATION & DEVELOPMENT, 2019, 11 (03): : 323 - 337
  • [26] ON THE SYMMETRY OF STOKES REGIONS OF A SIMPLE SINGULARITY
    YU, JM
    MATHEMATISCHE ANNALEN, 1993, 296 (03) : 481 - 491
  • [27] SYMMETRY AND SINGULARITY FORMATION IN EXPANDING SPACETIMES
    OVE, R
    PHYSICAL REVIEW D, 1989, 39 (12): : 3587 - 3595
  • [28] Bridging the chiral symmetry and confinement with singularity
    Choun, Yoon-Seok
    Sin, Sang-Jin
    PHYSICS LETTERS B, 2020, 805
  • [29] SINGULARITY PREVENTION AND BROKEN LORENTZ SYMMETRY
    GASPERINI, M
    CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (02) : 485 - 494
  • [30] Transient phenomena in the mathematical theory of epidemics
    Tsitsiashvili, GS
    DOKLADY MATHEMATICS, 2000, 61 (03) : 371 - 372