Time-hierarchical Clustering and Visualization of Weather Forecast Ensembles

被引:65
|
作者
Ferstl, Florian [1 ]
Kanzler, Mathias [1 ]
Rautenhaus, Marc [1 ]
Westermann, Ruediger [1 ]
机构
[1] Tech Univ Munich, D-80290 Munich, Germany
基金
欧洲研究理事会;
关键词
Ensemble visualization; uncertainty visualization; meteorological visualization; iso-contours; time-varying data; clustering; COMPARATIVE VISUAL ANALYSIS; UNCERTAINTY; FLOW; FEATURES; GLYPHS; TOOL;
D O I
10.1109/TVCG.2016.2598868
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
引用
收藏
页码:831 / 840
页数:10
相关论文
共 50 条
  • [21] A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap
    van der Laan, MJ
    Pollard, KS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 275 - 303
  • [22] Growing Hierarchical Trees for Data Stream Clustering and Visualization
    Nhat-Quang Doan
    Ghesmoune, Mohammed
    Azzag, Hanane
    Lebbah, Mustapha
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [23] Large graph visualization from a hierarchical node clustering
    Rossi, Fabrice
    Villa-Vialaneix, Nathalie
    JOURNAL OF THE SFDS, 2011, 152 (03): : 34 - 65
  • [24] An agglomerative hierarchical approach to visualization in Bayesian clustering problems
    K J Dawson
    K Belkhir
    Heredity, 2009, 103 : 32 - 45
  • [25] Hierarchical classification of diatom images using ensembles of predictive clustering trees
    Dimitrovski, Ivica
    Kocev, Dragi
    Loskovska, Suzana
    Dzeroski, Saso
    ECOLOGICAL INFORMATICS, 2012, 7 (01) : 19 - 29
  • [26] Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering
    Thygesen, Signe Sidwall
    Bin Masood, Talha
    Linares, Mathieu
    Natarajan, Vijay
    Hotz, Ingrid
    COMPUTER GRAPHICS FORUM, 2022, 41 (03) : 333 - 344
  • [27] Financial Time Series Forecast Using Neural Network Ensembles
    Tarsauliya, Anupam
    Kala, Rahul
    Tiwari, Ritu
    Shukla, Anupam
    ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 : 480 - 488
  • [28] Gene expression data clustering and visualization based on a binary hierarchical clustering framework
    Szeto, LK
    Liew, AWC
    Yan, H
    Tang, SS
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2003, 14 (04): : 341 - 362
  • [29] Solar Power Forecasting Using Weather Type Clustering and Ensembles of Neural Networks
    Rana, Mashud
    Koprinska, Irena
    Agelidis, Vassilios G.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4962 - 4969
  • [30] Time series clustering based on forecast densities
    Alonso, A. M.
    Berrendero, J. R.
    Hernandez, A.
    Justel, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 762 - 776