Brittle-Ductile Transition in Low Carbon Steel Deformed by the Accumulative Roll Bonding Process

被引:32
|
作者
Tanaka, Masaki [1 ]
Higashida, Kenji [1 ]
Shimokawa, Tomotsugu [2 ]
Morikawa, Tatsuya [1 ]
机构
[1] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[2] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mech Sci & Engn, Kanazawa, Ishikawa 9201192, Japan
关键词
grain boundary shielding; crack; severe plastic deformation; accumulative roll-bonding (ARB); CRACK-TIP DISLOCATIONS; FRACTURE-TOUGHNESS; IRON-CHROMIUM; CRYSTALS; SILICON; TEMPERATURE; MOBILITY; ARB;
D O I
10.2320/matertrans.MD200817
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Brittle-ductile transition (BDT) behaviour was investigated in low carbon steel deformed by an accumulative roll-bonding (ARB) process. The temperature dependence of its fracture toughness was measured by conducting four-point bending tests at various temperatures and strain rates. The fracture toughness increased while the BDT temperature decreased in the specimens deformed by the ARB process. Arrhenius plots between the BDT temperatures and the strain rates indicated that the activation energy for the BDT did not change due to the deformation with the ARB process. It was deduced that the decrease in the BDT temperature by grain refining was not due to the increase in the dislocation mobility controlled by short-range obstacles. Molecular dynamics simulations revealed that moving dislocations were impinged against grain boundaries, creating a shielding field, and were reemitted from there with increasing strain. Grain refining led to an increase in the fracture toughness at low temperatures and a decrease in the BDT temperature. In the present paper, the roles of-rain boundaries have been discussed in order to explain the enhancement in the fracture toughness of fine-grained materials at low temperatures, and the decrease in the BDT temperature. [doi:10.2320/matertrans.MD200817]
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [31] THE EFFECTS OF POROSITY ON THE BRITTLE-DUCTILE TRANSITION IN SANDSTONES
    SCOTT, TE
    NIELSEN, KC
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B1): : 405 - 414
  • [32] BRITTLE-DUCTILE TRANSITION TEMPERATURES IN IONIC CRYSTALS
    MURRAY, GT
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1960, 43 (06) : 330 - 334
  • [33] Mechanisms of brittle-ductile transition in toughened thermoplastics
    VuKhanh, T
    Yu, Z
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 1997, 26 (03) : 177 - 183
  • [34] Introducing brittle-ductile transition and interfacial debonding
    George, A.
    Diffusion and Defect Data Pt.B: Solid State Phenomena, 1998, 59-60 : 251 - 272
  • [35] BRITTLE FAILURE IN COMPRESSION - SPLITTING, FAULTING AND BRITTLE-DUCTILE TRANSITION
    HORII, H
    NEMATNASSER, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 319 (1549): : 337 - 374
  • [36] Critical behavior of brittle-ductile transition of polymers
    Jiang, Wei
    Hu, Yuexin
    Yin, Jinghua
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2008, 46 (07) : 766 - 769
  • [37] The brittle-ductile transition in porous rock: A review
    Wong, Teng-fong
    Baud, Patrick
    JOURNAL OF STRUCTURAL GEOLOGY, 2012, 44 : 25 - 53
  • [38] Role of the brittle-ductile transition on fault activation
    Doglioni, C.
    Barba, S.
    Carminati, E.
    Riguzzi, F.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2011, 184 (3-4) : 160 - 171
  • [39] Brittle-ductile transition in γ-TiAl single crystals
    Univ of Oxford, Oxford, United Kingdom
    Acta Mater, 3 (1045-1053):
  • [40] Quantification of notch effects -: In brittle-ductile transition
    Tóth, L
    TRANSFERABILITY OF FRACTURE MECHANICAL CHARACTERISTICS, 2002, 78 : 323 - 336