Urdu Nastaliq recognition using convolutional-recursive deep learning

被引:76
|
作者
Naz, Saeeda [1 ,2 ]
Umar, Arif I. [1 ]
Ahmad, Riaz [3 ]
Siddiqi, Imran [4 ]
Ahmed, Saad B. [5 ]
Razzak, Muhammad I. [5 ]
Shafait, Faisal [6 ]
机构
[1] Hazara Univ, Dept Informat Technol, Mansehra, Pakistan
[2] GGPGC 1, Higher Educ Dept, Abbottabad, Pakistan
[3] Univ Kaiserslautern, Kaiserslautern, Germany
[4] Bahria Univ, Islamabad, Pakistan
[5] King Saud Bin Abdulaziz Univ Hlth Sci, Riyadh, Saudi Arabia
[6] NUST, Islamabad, Pakistan
关键词
RNN; CNN; Urdu OCR; BLSTM; MDLSTM; CTC; FEATURES;
D O I
10.1016/j.neucom.2017.02.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in recognition of cursive scripts rely on implicit feature extraction methods that provide better results as compared to traditional hand-crafted feature extraction approaches. We present a hybrid approach based on explicit feature extraction by combining convolutional and recursive neural networks for feature learning and classification of cursive Urdu Nastaliq script. The first layer extracts low-level translational invariant features using Convolutional Neural Networks (CNN) which are then forwarded to Multi-dimensional Long Short-Term Memory Neural Networks (MDLSTM) for contextual feature extraction and learning. Experiments are carried out on the publicly available Urdu Printed Text-line Image (UPTI) dataset using the proposed hierarchical combination of CNN and MDLSTM. A recognition rate of up to 98.12% for 44-classes is achieved outperforming the state-of-the-art results on the UPTI dataset. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 50 条
  • [31] Evaluation of deep learning approaches for optical character recognition in Urdu language
    Riaz, Mehek
    Monir, Syed Muhammad Ghazanfar
    Hasan, Rija
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2022, 41 (04) : 146 - 156
  • [32] Generative image captioning in Urdu using deep learning
    Afzal M.K.
    Shardlow M.
    Tuarob S.
    Zaman F.
    Sarwar R.
    Ali M.
    Aljohani N.R.
    Lytras M.D.
    Nawaz R.
    Hassan S.-U.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 7719 - 7731
  • [33] Deep learning architecture for the recursive patterns recognition model
    Puerto, E.
    Aguilar, J.
    Reyes, J.
    Sarkar, D.
    INTERNATIONAL MEETING ON APPLIED SCIENCES AND ENGINEERING, 2018, 1126
  • [34] Multi-Domain Deep Convolutional Neural Network for Ancient Urdu Text Recognition System
    Aarif, K. O. Mohammed
    Sivakumar, P.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 275 - 289
  • [35] Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
    Umarov, Ramzan Kh.
    Solovyev, Victor V.
    PLOS ONE, 2017, 12 (02):
  • [36] Deep Learning for Asphalt Pavement Cracking Recognition Using Convolutional Neural Network
    Wang, Kelvin C. P.
    Zhang, Allen
    Li, Joshua Qiang
    Fei, Yue
    Chen, Cheng
    Li, Baoxian
    AIRFIELD AND HIGHWAY PAVEMENTS 2017: DESIGN, CONSTRUCTION, EVALUATION, AND MANAGEMENT OF PAVEMENTS, 2017, : 166 - 177
  • [37] Traffic Sign Recognition Using Deep Convolutional Networks and Extreme Learning Machine
    Zeng, Yujun
    Xu, Xin
    Fang, Yuqiang
    Zhao, Kun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: IMAGE AND VIDEO DATA ENGINEERING, ISCIDE 2015, PT I, 2015, 9242 : 272 - 280
  • [38] Physical Activity Recognition using Deep Transfer Learning with Convolutional Neural Networks
    Ataseven, Berke
    Madani, Alireza
    Semiz, Beren
    Gursoy, M. Emre
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 103 - 108
  • [39] Lexical Intent Recognition in Urdu Queries Using Deep Neural Networks
    Shams, Sana
    Aslam, Muhammad
    Maria Martinez-Enriquez, Ana
    ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 39 - 50
  • [40] A novel holistic unconstrained handwritten urdu recognition system using convolutional neural networks
    Aejaz Farooq Ganai
    Farida Khursheed
    International Journal on Document Analysis and Recognition (IJDAR), 2022, 25 : 351 - 371