A hybrid system for embedded machine vision using FPGAs and neural networks

被引:2
|
作者
Prieto, Miguel S. [1 ]
Allen, Alastair R. [1 ]
机构
[1] Univ Aberdeen, Sch Engn & Phys Sci, Aberdeen AB24 3UE, Scotland
关键词
Embedded machine vision; FPGA; ANN; SOM; ROAD SIGN DETECTION; CLASSIFICATION;
D O I
10.1007/s00138-008-0133-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid model for embedded machine vision combining programmable hardware for the image processing tasks and a digital hardware implementation of an artificial neural network for the pattern recognition and classification tasks. A number of possible architectural implementations are compared. A prototype development system of the hybrid model has been created, and hardware details and software tools are discussed. The applicability of the hybrid design is demonstrated with the development of a vision application: real-time detection and recognition of road signs.
引用
收藏
页码:379 / 394
页数:16
相关论文
共 50 条
  • [41] Designing and Accelerating Spiking Neural Networks using OpenCL for FPGAs
    Podobas, Artur
    Matsuoka, Satoshi
    2017 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY (ICFPT), 2017, : 255 - 258
  • [42] Inspection of Partial Bitstreams for FPGAs using Artificial Neural Networks
    Rettkowski, Jens
    Mahmood, Safdar
    Shallufa, Arij
    Huebner, Michael
    Goehringer, Diana
    2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 83 - 86
  • [43] Inspection of partial bitstreams for FPGAs using artificial neural networks
    Rettkowski, Jens
    Mahmood, Safdar
    Shallufa, Arij
    Hubner, Michael
    Gohringer, Diana
    Proceedings - 2019 IEEE 33rd International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2019, 2019, : 83 - 86
  • [44] Machine vision based quality evaluation of Iyokan orange fruit using neural networks
    Kondo, N
    Ahmad, U
    Monta, M
    Murase, H
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2000, 29 (1-2) : 135 - 147
  • [45] Machine vision using artificial neural networks with local 3D neighborhoods
    Schmoldt, DL
    Li, P
    Abbott, AL
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 1997, 16 (03) : 255 - 271
  • [46] Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms
    Williams, Henry A. M.
    Jones, Mark H.
    Nejati, Mahla
    Seabright, Matthew J.
    Bell, Jamie
    Penhall, Nicky D.
    Barnett, Josh J.
    Duke, Mike D.
    Scarfe, Alistair J.
    Ahn, Ho Seok
    Lim, JongYoon
    MacDonald, Bruce A.
    BIOSYSTEMS ENGINEERING, 2019, 181 : 140 - 156
  • [47] Automated surface defect detection framework using machine vision and convolutional neural networks
    Singh, Swarit Anand
    Desai, K. A.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 1995 - 2011
  • [48] Automated surface defect detection framework using machine vision and convolutional neural networks
    Swarit Anand Singh
    K. A. Desai
    Journal of Intelligent Manufacturing, 2023, 34 : 1995 - 2011
  • [49] License plate recognition system using hybrid neural networks
    Seetharaman, V
    Nathan, VSL
    Sathyakhala, A
    Sunder, P
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 363 - 366
  • [50] A hybrid human recognition framework using machine learning and deep neural networks
    Sheneamer, Abdullah M.
    Halawi, Malik H.
    Al-Qahtani, Meshari H.
    PLOS ONE, 2024, 19 (06):