A hybrid system for embedded machine vision using FPGAs and neural networks

被引:2
|
作者
Prieto, Miguel S. [1 ]
Allen, Alastair R. [1 ]
机构
[1] Univ Aberdeen, Sch Engn & Phys Sci, Aberdeen AB24 3UE, Scotland
关键词
Embedded machine vision; FPGA; ANN; SOM; ROAD SIGN DETECTION; CLASSIFICATION;
D O I
10.1007/s00138-008-0133-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid model for embedded machine vision combining programmable hardware for the image processing tasks and a digital hardware implementation of an artificial neural network for the pattern recognition and classification tasks. A number of possible architectural implementations are compared. A prototype development system of the hybrid model has been created, and hardware details and software tools are discussed. The applicability of the hybrid design is demonstrated with the development of a vision application: real-time detection and recognition of road signs.
引用
收藏
页码:379 / 394
页数:16
相关论文
共 50 条
  • [1] A hybrid system for embedded machine vision using FPGAs and neural networks
    Miguel S. Prieto
    Alastair R. Allen
    Machine Vision and Applications, 2009, 20 : 379 - 394
  • [2] Urban sound classification using neural networks on embedded FPGAs
    Belloch, Jose A.
    Coronado, Raul
    Valls, Oscar
    del Amor, Rocio
    Leon, German
    Naranjo, Valery
    Dolz, Manuel F.
    Amor-Martin, Adrian
    Pinero, Gema
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 13176 - 13186
  • [3] Implementing NEF Neural Networks on Embedded FPGAs
    Morcos, Benjamin
    Stewart, Terrence C.
    Eliasmith, Chris
    Kapre, Nachiket
    2018 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT 2018), 2018, : 25 - 32
  • [4] Special issue on machine vision using neural networks
    MacIntyre, J
    NEURAL COMPUTING & APPLICATIONS, 1998, 7 (03): : 193 - 193
  • [5] Deep Embedded Vision Using Sparse Convolutional Neural Networks
    Pikoulis, Vassilis
    Mavrokefalidis, Christos
    Keramidas, Georgios
    Birbas, Michael
    Tsafas, Nikos
    Lalos, Aris S.
    ERCIM NEWS, 2020, (122): : 39 - 40
  • [6] Embedded Control System Using FPGAs
    Nouman, Z.
    Klima, B.
    Knobloch, J.
    12TH INTERNATIONAL CONFERENCE ON LOW VOLTAGE ELECTRICAL MACHINES, 2012, : 144 - 147
  • [7] An Automated Workflow for Generation of Neural Networks for Embedded FPGAs on IoT
    Muyal, Thomas Araujo
    Zuffo, Marcelo Knorich
    2022 SYMPOSIUM ON INTERNET OF THINGS, SIOT, 2022,
  • [8] Face Recognition using Bayesian Neural Networks for Machine Vision
    Huang, Xiaoli
    Zeng, Huanglin
    Wang, Xianqiu
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, : 359 - 362
  • [9] DEVELOPMENT OF A MACHINE VISION SYSTEM FOR DAMAGE AND OBJECT DETECTION IN TUNNELS USING CONVOLUTIONAL NEURAL NETWORKS
    Alidoost, F.
    Hahn, M.
    Austen, G.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 1 - 8
  • [10] A study of broccoli grading system based on machine vision and neural networks
    Tu, Kang
    Ren, Ke
    Pan, Leiqing
    Li, Hongwen
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 2332 - 2336