LES modelling of an unconfined large-scale hydrogen-air deflagration

被引:65
|
作者
Molkov, Vladimir [1 ]
Makarov, Dmitriy
Schneider, Helmut
机构
[1] Univ Ulster, FireSERT, Newtownabbey BT37 0QB, Antrim, North Ireland
[2] Fraunhofer Inst Chem Technol, D-76327 Pfinztal, Germany
关键词
D O I
10.1088/0022-3727/39/20/012
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper describes the large eddy simulation modelling of unconfined large-scale explosions. The simulations are compared with the largest hydrogen-air deflagration experiment in a 20m diameter hemispherical polyethylene shell in the open. Two combustion sub-models, one developed on the basis of the renormalization group (RNG) theory and another derived from the fractal theory, were applied. Both sub-models include a sub-grid scale model of the turbulence generated by flame front itself based on Karlovitz's theory and the observation by Gostintsev et al on a critical distance for transition from laminar to self-similar flame propagation regime. The RNG sub- model employs Yakhot's formula for turbulent premixed flame propagation velocity. The best fit flame propagation dynamics is obtained for the fractal sub- model with a fractal dimension D = 2.22. The fractal sub- model reproduces the experimentally observed flame acceleration during the whole duration of explosion, accurately simulating the negative phase of the pressure wave but overestimating by 50% the positive phase amplitude. The RNG sub- model is closer to the experiment in predicting the positive phase but under-predicts by 30% the negative phase amplitude. Both sub- models simulate experimental flame propagation up to 20m and pressure dynamics up to 80m with reasonable accuracy.
引用
收藏
页码:4366 / 4376
页数:11
相关论文
共 50 条
  • [41] Effect of diffusion time on the mechanism of deflagration to detonation transition in an inhomogeneous mixture of hydrogen-air
    Saeid, Mohammad Hosein Shamsadin
    Khadem, Javad
    Emami, Sobhan
    Ghodrat, Maryam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23411 - 23426
  • [42] A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy
    Pang, Lei
    Wang, Chenxu
    Han, Mengxing
    Xu, Zilong
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 299 : 174 - 180
  • [43] Influence of hydrogen concentration on the pressure oscillation and flame propagation during vented deflagration of hydrogen-air mixtures
    Cao, Yong
    Sun, Anzhi
    Hua, Min
    Pan, Xuhai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 64 : 798 - 805
  • [44] LES of hydrogen-air deflagrations in a 78.5-m tunnel
    Molkov, V.
    Verbecke, F.
    Makarov, D.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2008, 180 (05) : 796 - 808
  • [45] Large Eddy simulation of hydrogen-air premixed flames in a small scale combustion chamber
    Abdel-Raheem, M. A.
    Ibrahim, S. S.
    Malalasekera, W.
    Masri, A. R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (07) : 3098 - 3109
  • [46] Study on inhomogeneous hydrogen-air mixture flame acceleration and deflagration-to-detonation transition
    Yang, Guogang
    Sheng, Zhonghua
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    Xu, Zhuangzhuang
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [47] Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture
    Coates, Ashley M.
    Mathias, Donovan L.
    Cantwell, Brian J.
    COMBUSTION AND FLAME, 2019, 209 : 278 - 290
  • [48] MATHEMATICAL MODELLING OF FLAME PROPAGATION IN HYDROGEN-AIR MIXTURES
    Belyaev, P. E.
    Aetpaeva, M. S.
    Kovalev, Yu. M.
    Pigasov, E. E.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (01): : 5 - 16
  • [49] Effects of hydrogen concentration on the vented deflagration of hydrogen-air mixtures in a 1-m3 vessel
    Wang, Jingui
    Guo, Jin
    Yang, Fuqiang
    Zhang, Jiaqing
    Lu, Shouxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 21161 - 21168
  • [50] Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube
    Li, Shuzhuan
    Liu, Qingming
    Chen, Xu
    Huang, Jinxiang
    Li, Jing
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 339 : 100 - 113