Calculation of the Electrostatic Field in a Dielectric-loaded Waveguide Due to an Arbitrary Charge Distribution on the Dielectric Layer

被引:0
|
作者
Berenguer, A. [1 ]
Coves, A. [1 ]
Mesa, F. [2 ]
Bronchalo, E. [1 ]
Gimeno, B. [3 ]
Boria, V. [4 ]
机构
[1] Univ Miguel Hernandez de Elche, Dept Ingn Comunicac, Elche, Spain
[2] Univ Seville, Dept Fis Aplicada 1, Seville, Spain
[3] Univ Valencia, Inst Ciencia Mat, Dept Fis Aplicada & Elctromagnetismo, Valencia, Spain
[4] Univ Politecn Valencia, Dept Comunicac, Valencia, Spain
关键词
MULTIPACTOR DISCHARGE; WINDOWS; SURFACE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The goal of this paper is to study the electrostatic field due to an arbitrary charge distribution on a dielectric layer in a dielectric-loaded rectangular waveguide. In order to obtain this electrostatic field, the potential due to a point charge on the dielectric layer is solved in advance. The high computational complexity of this problem requires the use of different numerical integration techniques (e.g., Filon, Gauss-Kronrod, Lobatto, . . .) and interpolation methods. Using the principle of superposition, the potential due to an arbitrary charge distribution on a dielectric layer is obtained by adding the individual contribution of each point charge. Finally, a numerical differentiation of the potential is carried out to obtain the electrostatic field in the waveguide. The results of this electrostatic problem are going to be extended to model the multipactor effect, which is a problem of great interest in the space industry.
引用
收藏
页码:3251 / 3255
页数:5
相关论文
共 50 条
  • [41] Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide
    Berenguer, Andres
    Coves, Angela
    Gimeno, Benito
    Bronchalo, Enrique
    Boria, Vicente E.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (09) : 595 - 597
  • [42] A Dielectric-Loaded Converging Waveguide Antenna for Microwave Fracturing of Hard Rocks
    Ma, Zhongjun
    Zheng, Yanlong
    Zhao, Xiaobao
    Li, Jianchun
    Zhao, Jian
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (06) : 4243 - 4249
  • [43] Multipactor Susceptibility Charts of a Parallel-Plate Dielectric-Loaded Waveguide
    Torregrosa-Penalva, German
    Coves, Angela
    Gimeno Martinez, Benito
    Montero, Isabel
    Vicente, Carlos
    Boria, Vicente E.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (05) : 1160 - 1166
  • [44] Modal mapping between periodic lossy dielectric-loaded waveguide and uniform circular waveguide
    Du, Chao-Hai
    Liu, Pu-Kun
    Xue, Qian-Zhong
    Wang, Bin
    Li, Yan-Lin
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 29 (04): : 273 - 277
  • [45] MODAL MAPPING BETWEEN PERIODIC LOSSY DIELECTRIC-LOADED WAVEGUIDE AND UNIFORM CIRCULAR WAVEGUIDE
    Du Chao-Hai
    Liu Pu-Kun
    Xue Qian-Zhong
    Wang Bin
    Li Yan-Lin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2010, 29 (04) : 273 - 277
  • [46] FIELD ANALYSIS OF DIELECTRIC-LOADED LENS APPLICATOR FOR MICROWAVE HYPERTHERMIA
    ALEXANDER, PH
    LIU, JF
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (05) : 792 - 796
  • [47] Time evolution of an electron discharge in a parallel-plate dielectric-loaded waveguide
    Torregrosa, German
    Coves, Angela
    Vicente, Carlos P.
    Perez, Antonio M.
    Gimeno, Benito
    Boria, Vicente E.
    IEEE ELECTRON DEVICE LETTERS, 2006, 27 (07) : 619 - 621
  • [48] High-Gradient Cherenkov Radiation Based on a New Dielectric-Loaded Waveguide
    Jiang, Shimin
    Li, Weiwei
    He, Zhigang
    Jia, Qika
    PARTICLES, 2018, 1 (01) : 279 - 284
  • [49] Analysis of Dielectric-Loaded Waveguide Filters by the Generalized BI-RME Method
    Battistutta, Simone
    Bozzi, Maurizio
    Bressan, Marco
    Perregrini, Luca
    2018 48TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2018, : 444 - 447
  • [50] Saturation Mechanism of Multipactor Effect in a One-Sided Dielectric-Loaded Waveguide
    Zhang, Xue
    Yu, Qianqian
    Ni, Xinrong
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (02) : 748 - 753